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ABSTRACT 

Research presented in this thesis stems from rising concern about blast-induced 

traumatic brain injury (TBI). It has been hypothesized that brain tissue is damaged by the 

blast wave generated during an explosion, but the mechanism of tissue injury is 

unknown. The pressure wave produced by a typical explosion includes a peak pressure, 

or overpressure, and positive and negative pressure phases; each component of this blast 

wave may make a unique contribution to injury. A simple device called a shock tube is 

capable of generating the characteristics associated with the blast wave. This thesis 

presents a computational model of a shock tube being used in our laboratory to 

investigate the above-mentioned characteristics of the blast wave. The shock tube is 

approximately 135 cm long and has a 2.54 cm inner diameter.  

This research has two primary objectives. The first is to characterize blast wave 

properties as a function of shock tube independent parameters. In our shock tube, the 

independent parameters are driver section length and initial pressure. Because the 

purpose of this research is to study injury due to pressure wave loading alone, the target 

is placed outside the tube to avoid interaction with venting gases. Quantifying the 

appropriate region for testing is the second main objective of this research.   

Shock behavior within the shock tube was characterized with 1D simulations, 

while expansion of the wave after it exits the tube was modeled using primarily 2D but 
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also 3D simulations. The numerical code used for this research (called Uintah) was 

previously developed at the University of Utah.  

Results show that peak overpressure and positive phase duration increase with 

driver pressure, and negative phase duration decreases with driver pressure. Response 

time of the expansion waves is controlled by the driver section length. Expansion waves 

travel in the reverse direction to the shock wave and reflect back from the shock tube 

wall. These reflected expansion waves eventually overtake the shock wave, and decrease 

its peak pressure, increasing the positive phase duration.  Results from 2D simulations 

show that the region lying above 45⁰ angle from the shock tube axis is the most 

appropriate region for testing of primary blast effects. Preliminary 3D simulations 

generally agree but suggest that this boundary may be overly conservative so that some of 

the region below this line is likely also appropriate for testing. As anticipated, the 2D 

approach has quantitative limitations in modeling 3D behavior. However, comparison 

with the 3D solution indicates that the 2D approach effectively simulates trends in shock 

tube behavior. In addition to these findings, an investigation of boundary conditions and 

potential sources of error in the numerical code are also discussed. 
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1 INTRODUCTION 

1.1 Motivation 

Awareness of traumatic brain injuries has increased over the past few years 

because of the recent rise in terrorist activities and the need to increase safety in military 

areas. A traumatic brain injury is defined as a blow to the head or a penetrating head 

injury that disrupts the functions of a brain. Over 1.4 million Americans suffer traumatic 

brain injury each year [1]. Main causes of traumatic brain injury are motor vehicle 

accidents (around 20%), falls, physical violence, and blasts or explosions, the latter of 

which are a major concern in the military. The effects of blasts, or explosions, are 

classified into primary, secondary, and tertiary effects [2]. Every explosion, or blast, 

generates a pressure wave that originates from the center of the blast and spreads out 

spherically from the origin of the explosion. Due to the high energy it carries, this 

pressure wave causes damage to living animal tissues; these are termed primary, or 

direct, effects. Secondary and tertiary effects (also described as indirect effects) of the 

blast are associated with the damage caused by projectiles thrown into a person and by a 

person being thrown.  

Some recent blast experiments suggest that primary effects may play a significant 

role in neurological damage in animals but the mechanism of injury under primary 

loading is not clear. There is a possibility that blast loads impair the circulatory or 
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respiratory system, which subsequently leads to brain injury [1]. Hence, studying injuries 

caused by primary effects is of vital importance.  

To study the primary effects on biological tissue, an experimental blast wave that 

simulates a real blast wave is required. Shock tubes can be used for this purpose, and 

such a tube is now under use in our laboratory. The objective of this thesis is to describe 

numerical simulations used to characterize the performance of this shock tube.     

This chapter covers fundamentals of compressible fluids, shock waves and 

expansion waves in Sections 1.2, and 1.3, respectively, operation of a simple shock tube 

in Section 1.4, research objectives in Section 1.5, and the description of the applied 

numerical approach and governing equations in Section 1.6. 

 

1.2 Compressible fluids   

All fluids are technically compressible but they are categorized into compressible 

and incompressible fluids, depending on their degree of compressibility. A fluid whose 

density varies in an appreciable amount when subjected to high pressure is called a 

compressible fluid. The main difference between compressible and incompressible fluids 

is the rate at which forces are transmitted through the fluid. For example, if a pump fitted 

at one end of a pipeline filled with water is turned on, water will begin to flow almost 

immediately out of the other end. In compressible fluids, imposition of force at one end 

of the pipe does not cause immediate flow of fluid at the other end of the pipe. Instead, 

fluid in the area of application of force gets compressed and its density increases. The 

compressed fluid expands against the adjacent fluid, which is at a lower density. This 

results in the compression of adjacent fluid and sets in motion a compression pulse that 
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travels throughout the pipe. In some cases, this compression pulse will combine with 

others to form a shock wave. 

 

1.2.1 Sound waves and speed of sound 

All fluids are elastic in nature, so a pressure disturbance transmits in the form of 

successive compression and rarefaction waves. This pressure disturbance is called a finite 

disturbance when a perturbation in the thermodynamic state of quiescent gas causes 

variations in pressure and density the same order as that of local values of pressure and 

density. However, when the disturbance is very small (ΔP/P <<1), small perturbations 

(i.e. sound waves) propagate at a speed of sound c, as in Equation 1.1,  

 

















p
c 2

  

 

where p and ρ are the pressure and density of the fluid, respectively. 

However, when the strength of a disturbance becomes large enough, i.e. of almost 

the same order as p, the speed of the wave increases beyond the speed of a sound wave; 

this generated wave of higher amplitude is called a shock wave. Table 1.1 lists the 

difference between sound waves and shock waves. 

 

1.2.2 Mach number 

The Mach number is the ratio of the speed of a fluid particle in a medium to the 

speed of sound in that medium (pages 1-40 in [3]), as given in Equation 1.2. 

 

(1.1) 
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Table 1.1: Fundamental differences between sound waves and shock waves 

Sound waves Shock waves 

No particle flow across the sound wave Particle flow across the shock wave 

Thermodynamic state of gas remains 

unaltered due to passage of sound wave 

Thermodynamic state of gas is altered due 

to the successive compression and 

rarefaction of  gas 

The process of formation of sound wave is 

isentropic 

The process of formation of shock wave is 

irreversible 

 

 

  
 

 
 

 

 
  
  

 

 

where V is the speed of a fluid particle in a medium and c is the speed of sound in the 

same medium. The flow of fluid is divided into the following types according to the 

Mach number of fluid (Table 1.2). 

 

Table 1.2: Mach number ranges 

M<1 Subsonic  

M = 1 Sonic 

0.8<M<1.2 Transonic 

M >1 Supersonic 

 

(1.2) 
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1.3 Shock waves and expansion waves 

This section covers the description of the shock wave and its complementary part 

expansion waves.  

 

1.3.1 Introduction 

When high pressure gas suddenly comes into contact with low pressure gas, there 

is an expansion of the high pressure gas into the low pressure region, forming a weak 

compression wave that propagates into the low pressure gas. For a sufficiently high 

pressure difference between the gases (usually greater than 2.5), a number of 

compression waves coalesce to form a shock wave. Temperature increases almost 

instantaneously, and there is an increase in entropy across the shock, making the flow 

irreversible. They cause a discontinuous change in fluid properties such as speed (which 

changes from supersonic to subsonic), pressure, temperature, and density. When a 

compression shock wave progresses in one direction, there is also an expansion wave 

progressing in the reverse direction. The formation of both waves can be explained as 

follows. 

 

1.3.2 Compression wave  

The description of the compression wave is adopted from pages 138 - 198 in [3]. 

Figure 1.1 shows the formation of a compression wave in a duct. High pressure gas can 

be described as a low mass piston when exposed suddenly to a low pressure gas. The 

velocity of the piston then increases by a small increment dV at each instant in time until 

it reaches a constant magnitude of V. After the first increment of piston to the right, a 

weak compression wave is created, which propagates through the low pressure gas.  
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Figure 1.1:Shock wave formation (diagram re-created from Saad [3], Fig. 4.3) 
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Due to the passage of the wave, the pressure and temperature of the gas behind 

the wave increase, and the gas is set in motion to the right with velocity dV. When the 

piston is incremented by dV a second time, another wave is generated, which travels into 

the gas at a higher sonic speed than the first wave, because the gas through which it is 

traveling is already at a higher temperature and pressure due to the passage of the first 

wave. The speed of sound depends on the properties of the gas through which it is 

traveling, and so the second wave has the higher absolute velocity than the first wave, 

eventually overtaking it. Likewise, the third wave overtakes the first two. These waves 

reinforce each other to form a single compression shock wave of finite thickness.   

 

1.3.3 Expansion waves  

The description of the expansion waves is adopted from pages 138 - 198 in [3]. 

The development of an expansion wave can be explained in a similar way. Applying the 

same piston analogy, if the piston is moved towards the left with a small increment of dV, 

a weak expansion wave travels to the right through a gas. Gas behind the wave is set in 

motion to the left at velocity dV due to the piston movement. Due to the passage of the 

expansion wave, the pressure and temperature of the gas behind it decrease. When the 

piston is incremented a second time, another expansion wave passes and has a lower 

speed than the first one, since the gas through which it is traveling is at a lower pressure 

and temperature. Unlike compression waves, expansion waves and the gas travel in 

opposite directions. As each successive expansion wave has a velocity lower than the 

preceding one, successive expansion waves do not reinforce each other to form a single 

expansion wave (Figure 1.2). 
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Figure 1.2: Expansion wave formation (diagram re-created from Saad [3], Fig. 4.4) 

 

1.3.4 Blast wave 

In an explosion, a wave system of both shock and expansion waves is generated. 

As the shock wave propagates into the surrounding space, expansion waves that 

propagate in the reverse direction reflect back from the origin of the explosion. These 

reflected waves, after a while, overtake the shock wave and slow it down. This degraded 

shock wave will be termed as a “blast wave” in this research, even though its 

characteristics are not very different from the incident shock. Around the origin of the 



9 

 

 

 

blast, reflected expansion waves create a zone of negative pressure, which is felt at the 

shock front very soon by means of the fluid molecules, and the flow is slowed down. This 

action degrades the shock wave to the blast wave.  The complex wave pattern generated 

from an explosion can be approximated by the Friedlander wave [4], shown in Figure 1.3. 

The main characteristics of a blast wave are the peak pressure and positive and negative 

phase durations. Positive phase duration is the time over which the pressure is greater 

than the ambient pressure, while negative phase duration is the time over which the 

pressure is less than the ambient pressure.  

 

 

Figure 1.3: Friedlander, or ideal blast, wave 
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1.4 Shock tube 

Shock tubes are commonly used to generate shock and blast waves in the 

laboratory. This section describes the operation of typical shock tubes and the approach 

used to generate blast waves using them. 

 

1.4.1 Introduction 

Compressed gas-driven shock tubes are a means to generate shock waves in the 

laboratory. The cross section can be circular or rectangular, depending on the application. 

It is closed at one end, while the other end can be kept open or closed depending upon the 

application. It is divided into high and low pressure regions by placing a diaphragm in 

between. The high pressure region is called the driver section and the low pressure region 

is called the driven section. The gas properties in these two regions can be the same or 

different. The length of the driven section (Ldn) is usually greater than the length of the 

driver section (Ldr). The ratio of the two is called the Length Ratio (LR; Equation 1.3) 

and is one of the most important parameters of the shock tube. The shock tube installed in 

our laboratory is closed at one end and open at the other, so the initial pressure in the 

driven section is atmospheric. Figure 1.4 shows the basic geometry of the shock tube. 

 

dr

dn

L

L
LR 

 

 

In order to generate a shock wave with a tube of this type, the driver section is 

pressurized. Under this pressure, the diaphragm deforms until it is ruptured by a blade 

placed at some minor distance from the diaphragm.  

(1.3) 
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Figure 1.4: Theoretical shock tube geometry 

 

Once the diaphragm ruptures, the high pressure gas suddenly comes into contact with the 

low pressure gas and generates a wave system of shock wave and expansion waves, as 

described in Section 1.3.  

 

1.4.2 Operation of shock tube 

The description of the operation of the shock tube is adopted from pages 138 - 

198 in [3]. The schematic diagram shown in Figure 1.5 is a shock tube separated in two 

sections of different pressures by means of a diaphragm. Region 4 is the driver section 

filled with high pressure gas. Region 1 is the driven section open to the atmosphere. 

Pressures in these regions are p4 and p1, respectively, at time t = 0. At t = 0, the 

diaphragm is ruptured, and the high pressure gas comes in contact with the low pressure 

gas, initiating the formation of the shock and expansion waves. Successive compression 

waves rapidly coalesce to form a single constant shaped shock wave that travels at high 

speed, leaving the gas behind it in motion to the right at velocity V2. According to the 

properties of the shock wave, p2>p1, T2>T1, and ρ2>ρ1. On the other side of the diaphragm 

(driver section), a series of expansion waves start traveling one behind the other in the  
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Figure 1.5: Operation of the shock tube (Diagram re-created from Compressible Fluid 

Flow [3],  Fig. 4.35) 
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direction opposite to that of the incident shock and reflect back from the wall. The 

leading expansion wave is shown to be traveling at a location “a” while the tail expansion 

wave is traveling at location “b.” The gas behind the tail expansion wave is set in motion 

to the right at velocity V3 = V2. Even though the shock and expansion waves move in 

opposite directions, the way they interact establishes the common pressure p2 = p3 and 

the common velocity V2 = V3. The density and the temperature of the gases, though, 

differ in these regions, forming a surface of discontinuity, which moves to the right at 

velocity V2. The physical properties described above are shown in Figure 1.5 at time t1. 

As can be seen, the velocity and the pressure are constant in regions 2 and 3, but the 

temperature varies in these two regions. Temperature T2 is higher than temperature T3 

because of the passage of the shock wave in region 2.  

 

1.4.3 Strength of shock wave 

The strength of shock is given by Equation 1.4 (pages 138 – 198 in [3]), 

 

  

  
    

   
    

   
     

 

where γ1 is the specific heat ratio in Region 1 and Ms is the Mach number of an incident 

shock. 

As Equation 1.4 shows, the strength of shock is independent of the lengths of the 

driver and the driven sections. It also represents the strength of a “pure” shock at one 

instant of time inside the shock tube. Equation 1.4 does not take into consideration the 

effect of the expansion wave.  

(1.4) 
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1.4.4 Blast wave in the shock tube 

Section 1.4.3 illustrates how shock and expansion waves are formed inside a 

shock tube. Given a long enough tube, the reflected expansion waves shown in Figure 1.5 

eventually overtake the shock front and degrade it down to a blast wave. This degradation 

principally means the reduction in the peak pressure and the velocity of the shock front. 

Figure 1.6 shows the difference between shock and blast waves as defined in this 

research. The blast wave is shown at the later time because it takes time for the expansion 

waves to reflect back and overtake the shock front.  

 

 

Figure 1.6: Comparison of shock wave and blast wave 
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1.5  Research objectives 

There are two primary objectives of this research project: (1) definition of 

relationships between independent shock tube control variables and the resulting blast 

wave characteristics and (2) identification of a region appropriate for testing with the 

shock tube utilized in our laboratory. 

 

1.5.1 Parameter study 

Figure 1.7 shows the experimental shock tube in our laboratory, the design of 

which was completed at Florida Tech University. Use of this tube has been reported 

elsewhere [5]. The detailed dimensions of the tube are given in Chapter 3. The 

experimental shock tube shown in Figure 1.7 has variable driver section length (Ldr) and 

a fixed driven section length. That implies the length ratio depends only on the driver 

section. The driven section of the tube is open to the atmosphere and the pressure in the 

driver section (Pdr) can be regulated by a pressure regulator knob on the high pressure gas 

cylinder. The tube is designed to generate a shock that ultimately exits the driven section 

and expands to interact with a target. So, our tube has two independent variables, viz. Pdr, 

Ldr, and three dependent variables of the blast wave, viz. peak pressure, positive phase 

duration, and negative phase duration. Therefore, the first objective of this research was 

to characterize the dependent variables of the blast wave as a function of the independent 

variables of the shock tube. 
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Figure 1.7: Experimental shock tube (courtesy Prof. Daniel Kirk, Florida Tech 

University)  
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1.5.2 Region for testing 

In Figure 1.7, the sensor attached to the bracket is shown. The sensor is mounted 

not along the axis of the shock tube but, actually, off axis. The reason for that is first, the 

shock expands outside the tube axisymmetrically and then follows the jet of high pressure 

gases, which, also, expand outside the tube, conically. The primary injury is associated 

only with the blast wave and not the exhaust gas vent. Figure 1.8 shows the difference 

between the impact on the rat brain produced by the blast wave alone and the blast wave 

combined with the gas vent. Peak OP refers to the peak of the blast wave. From Figure 

1.8, it seems that the impact due to the exhaust gas vent is significant and hence, isolating 

the target (rat) from the gas vent is important. Thus, the second objective of this research 

was to quantify the region for testing the samples (Figure 1.9). 

 

 

 Figure 1.8:  Rat head movement and deformation at different times; Peak OP 

refers to the peak of the blast wave.  (Fig. 2(D) in [5]) 
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Figure 1.9: Region for testing 

 

1.6 Numerical simulations 

The objectives mentioned in the previous section can be pursued either with an 

experimental approach or a numerical approach. This thesis concentrates on the 

numerical approach. This section focuses on the theory of numerical simulations, 

followed by a description of the software used for this research. The section concludes 

with presentation of the governing equations used for the shock tube problem.  

 

1.6.1 Introduction 

Numerical simulations are a powerful companion to experimental testing. In 

contrast to experimental shock tubes, which require equipment like a high pressure tank, 

diaphragm rupturing mechanism, and sensors to record data, numerical simulations are 
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generally minimally expensive and allow considerable flexibility in exploring a large 

solution space of a given problem. Once the needed computer code is written, initial 

setup required to run numerical simulations simply requires an input file where the 

physical and geometrical parameters of the tube are specified, as opposed to the 

experimental setup, which includes diaphragm replacement, filling up gas in the driver 

section, etc. In experiments, data can be obtained only at limited locations where sensors 

are mounted. In numerical simulations, data can be recorded anywhere inside and outside 

the tube just by adding the probe points into the input file. For these reasons, a numerical 

model is an attractive approach for parameter studies.  

While numerical simulations have many advantages, the speed of a simulation 

depends on the speed of the computer, the resolution used in the code, and the 

dimensionality of the problem. Three-dimensional simulations are computationally 

expensive and, unfortunately, many experimental systems, including the present shock 

tube, are naturally three-dimensional. Proper boundary conditions are also crucial and can 

be difficult to apply.  

 

1.6.2 Theory of numerical simulation 

The physical laws of nature can be written in the form of mathematical equations, 

which are often in the form of differential and integral calculus [6]. Sometimes, the 

equations are so complex that they cannot be solved analytically. Hence, there are two 

popular approaches to solve the real world problems. The first is the experimental 

approach, which seeks to ascertain the physical laws through observation and 

experimentation, while the second is the numerical approach, which solves the equations 

governing a problem on the discrete number of points to obtain an approximate solution. 



20 

 

 

 

If the points are spaced more densely, the accuracy of the solution increases to a level 

that can be reasonably compared with physical reality. This point spacing has particular 

importance in numerical simulations under the concept of resolution.  

In the case of studying dynamics of fluids, numerical simulations come under the 

description of Computational Fluid Dynamics (CFD). There are numerous different 

commercial CFD packages available, namely Fluent, OVERFLOW, CFL3D, and many 

more. The package used for this research is called Uintah. 

 

1.6.3 Uintah 

“The Uintah Computational Framework consists of a set of software components 

and libraries that facilitate the solution of Partial Differential Equations (PDEs) on 

Structured Adaptive Mesh Refinement (AMR) grids using hundreds to thousands of 

processors” [7]. More information on AMR structure is given in Chapter 3. The 

University of Utah Center for Accidental Fires and Explosions (C-SAFE) group 

programmed Uintah [8]. Uintah can solve full physics simulations of dynamic fluid-

structure interactions (FSI) involving large deformations and material transformations. A 

new application of the Uintah software is the shock tube problem described in this thesis. 

As the shock tube wall needs to be defined to restrict the flow inside it, the problem 

becomes the FSI problem with the assumption of no-wall-deformation. In Uintah, the 

method used for FSI is MPM-ICE. The Material Point Method (MPM) accounts for any 

structural behavior while the Implicit, Continuous-fluid, Eulerian (ICE) [9] method does 

the fluid analysis. MPM, originally developed by Sulsky [10, 11], is a particle method for 

structural mechanics simulations [8].  For this shock tube problem, the version of ICE 

utilized is a cell-centered, finite-volume, multimaterial, Eulerian method further 
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developed by Kashiwa and others at Los Alamos National Laboratory [12]. The 

governing multimaterial model equations are stated and described in the next subsection. 

The development of these equations can be found in [13]. 

 

1.6.4 Governing equations  

The governing equations used here are the multimaterial equations, in which each 

material is given a continuum description and defined over the complete computational 

domain [7, 8]. Multimaterial equations are used to determine the probability of finding a 

particular material at any location in space, together with its state (i.e. mass, momentum, 

energy). For a collection of N materials, the subscript r signifies one type of materials 

(for example, fluids), such that r = 1, 2, 3…, N. The r-material average density in volume 

υ is given as ρr = Mr/υ. Mr is the mass of material r in the volume υ. υ can be thought of 

as a computational cell. The rate of change of the state in a volume moving with the 

velocity of r-material is given by the following equations.  
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Γr is the rate at which r-material mass is converted or depleted from the volume due to 

the conversions from other materials, typically by a chemical reaction. Γrs is the rate of 

conversion of mass between the r-material to another s-material. In the shock tube 

problem described earlier, there is no conversion of mass due to any chemical reaction or 

between the two materials. Hence, the terms containing Γ are eliminated. ur, θr, σr, er, and 

ρr refer to the r-material velocity, volume fraction, stress, internal energy, and density, 

respectively. σ is the mean mixture stress,  τr is the deviatoric part of the material stress 

σr, and qr is the heat flux. In this research, body forces, viscous forces, and heat flux are 

neglected, so the terms containing g, τ, and q are eliminated from the above equations. hsr 

and frs represent the exchange of heat and momentum between r and s materials, 

respectively. ϑr is the specific volume of the r-material. After eliminating the terms 

mentioned above, the governing equations for the shock tube problem are as follows. 
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Equations 1.8, 1.9, and 1.10 are the conservation equations for mass, momentum, and 

energy for a multimaterial problem, respectively. In the problems pertaining to this 

research, material r is gas (air or nitrogen) and material s is the shock tube wall.  

These three equations, along with the equations of state [14], are solved to 

determine density, pressure, and velocity in three directions, along with internal energy 

and temperature. Each of these variables is solved within each cell as a function of time. 

The generated data is then analyzed using different visualization tools and combinations 

of different scripts, which mainly include C-Shell scripting, GNUplot scripting, and 

Octave scripting.  

 

1.7 Introduction of upcoming chapters 

The research described in this thesis was carried out mostly in one and two 

dimensions. Chapter 2 discusses the 1D solution to the shock tube problem. The objective 

of Chapter 2 is mainly to analyze the flow of compressed high pressure gases inside the 

tube. Chapter 3 discusses the 2D approximation to the shock tube problem. The objective 

of Chapter 3 is to analyze the pressure wave and the compressed high pressure gases after 

they exit the tube. Chapter 4 briefly discusses the 3D simulation and its comparison to 

2D. Chapter 5 summarizes the overall findings and conclusions, and presents 

recommendations for future work.   



 

 

 

 

2 ONE-DIMENSIONAL SOLUTION 

2.1 Introduction 

In the current experimental design, the target is exposed to a blast wave outside 

the shock tube. When the shock exits the tube, it expands axisymmetrically about the axis 

of the tube. However, inside the tube, all phenomena are one-dimensional, so a 1D model 

is sufficient. A 1D approach is used for this portion of the problem because it is relatively 

easy to run and requires less storage space and computer memory. This chapter 

principally covers the objective (Section 2.2), geometry, and input parameters of the 1D 

simulation (Section 2.3); followed by the governing equations (Section 2.4), resolution 

study (Section 2.5), and the validation of the numerical code (Section 2.6). Finally, 

results are discussed along with numerical errors in the simulation (Section 2.8). 

 

2.2 Objective of the 1D simulations  

Although the ultimate goal of this research is to study the wave formation outside 

the tube, the blast wave characteristics inside the tube are studied using 1D simulations. 

1D simulations are computationally less expensive and easier to run than a full problem. 

Therefore, the objective of 1D simulation is to understand the influence of the 

independent variables on the blast wave characteristics inside the tube.     
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2.3 Defining geometry and input parameters 

 A 1D shock tube can be represented as a line divided into two segments of 

initially different pressures. The lengths of the high pressure region and the low pressure 

region are denoted by Ldr and Ldn, respectively. The total length is denoted by L (see 

Figure 2.1). The gas in both regions is air. Table 2.1 gives a listing of parameters utilized 

in the simulation, including some that relate to the air. The initial pressure in the driver 

and the driven section is calculated by Equation 2.1: 

 

                

 

Some explanation is necessary for the last two parameters of Table 2.1, order of method 

and CFL number. Any partial derivative term can be expanded using Taylor’s series. The 

order of method, or order of accuracy, is determined by the number of terms of the 

Taylor’s series that are employed in the code. 

 

 

Figure 2.1:  Geometry of 1D shock tube simulation 

 

 

(2.1) 
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Table 2.1: The list of initial parameters to be declared in an input file 

Geometrical parameters Units 

Ldr m 

Ldn m 

LR (length ratio) - 

Physical parameters  

Air Density (ρ) kg/m
3 

Air Temperature (T) K 

Air Specific heat (Cv) J/kg-K 

Air Specific heat ratio (γ) - 

Other parameters  

Resolution (spacing between each cell) mm 

Physical time of the simulation (t) sec 

Order of method - 

CFL number - 

 

 

Accuracy increases with the number of terms used. Governing Equations 1.8 – 1.10 are in 

the form of partial derivatives with respect to time and space. In MPM, ICE, and MPM-

ICE, partial derivatives with respect to time always have the first order of method, while 

partial derivatives with respect to space can have first or pseudo second order of method. 

Pseudo second order means that order of method will be second for the continuous part of 

the numerical solution, but at discontinuities like a shock, the partial derivatives of the 

advection terms with respect to space change to the first order of method. The reason for 
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this is that the second order of method induces a larger error at the discontinuities than 

the first order. In this thesis, the “pseudo second order of method” is referred just as the 

“second order of method” for simplicity.   

In mathematics, while solving certain PDEs, the Courant–Friedrichs–Lewy (CFL) 

condition is necessary for the stability of the numerical solution [15]. As has been 

mentioned, in CFD, the domain is discretized into small cells. Let the length of each cell 

be Δx and the size of each timestep be Δt. Now, if the sound wave propagates through the 

fluid at velocity V in the cell, then for numerical stability, the time for the sound wave to 

travel the distance Δx should be greater than Δt, as given by Equation 2.2. 

 

     
  

     
 

 

        
  

  
    

 

Equation 2.3 is the CFL condition, where C is called the Courant number. The Courant 

number is represented by CFL in the input file. 

 

2.4 Governing equations 

There is no shock tube wall in the 1D shock tube model. Hence, the terms 

modeling momentum and thermal exchange between the solid and gas in Equations 1.8 - 

1.10 are eliminated. So, the value of θr becomes 1. Equations 2.4 – 2.6 are the simplified 

set of equations solved for the 1D shock tube problem.  

(2.2) 

(2.3) 
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2.5  Resolution study 

The concept of resolution was introduced in Chapter 1. Higher resolution results 

in greater accuracy if the numerical scheme is convergent. Before validating the 

numerical code against the exact solution, it is necessary to test the convergence of the 

solution through a resolution study. Table 2.2 represents the set of initial values used for 

the resolution study. Of the parameters displayed in Table 2.2, the density and 

temperature in both high and low pressure regions remain the same for most of the 

simulations. Also, the specific heat ratio remains the same. In similar subsequent tables, 

only parameters that differ from those in Table 2.2 are displayed. 

Resolution is defined as the length of the domain divided by the number of cells. 

But as the length of the domain is variable in this research, the resolution is expressed as 

the size of the cells. The resolution study was carried out evaluating the pressure versus 

time behavior at a distance of 0.35 m from the rear of the driver section. Figure 2.2 shows 

solutions at different resolutions. Results show that pressure profiles with cell spacing of 

1.25 mm and 0.625 mm are nearly equivalent. Thus, the cell spacing of 1.25 mm was 

chosen for further study. 

(2.4) 

(2.5) 

(2.6) 
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Table 2.2: Initial parameter declaration for resolution study 

Parameters Values Units 

Ldr 0.1  m 

Ldn 0.9  m 

LR 9  - 

Resolution (spacing between each cell) variable mm 

Density in HP region (ρ) 11.76 kg/m
3 

Density in LP region (ρ) 1.176 kg/m
3
 

Temperature in HP region (T) 300 K 

Temperature in LP region (T) 300 K 

Specific heat (Cv) 716.4 J/kg-K 

Specific heat ratio (γ) 1.4 - 

Physical time of the simulation (t) 0.002 sec 

Order of method First - 

CFL 0.45 - 
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2.6 Validation of the numerical code 

2.6.1 Description of exact solution 

The exact solution used here is the Riemann problem for the 1D case, wherein the 

time dependent Euler’s equations are solved for the ideal gas. The Riemann problem 

consists of a conservation law together with piecewise constant data having a single 

discontinuity, like a shock. The Riemann problem solved here is the one-dimensional 

shock tube problem. More details on the exact analytical solution can be found in the 

Toro’s book [16].         

 

2.6.2 Comparison of simulated results with the exact solution  

Boundary conditions applied to the Riemann problem are not discussed here 

because the simulation is terminated before the waves reach the boundary, thereby 

removing the effects of boundary conditions on the solution. A similar approach is used 

in the numerical simulation, where the physical time of the simulation is short enough to 

prevent the waves from reaching the boundaries. The shock and expansion waves 

propagate in opposite directions, so a length ratio of 1.0 was chosen, which divides the 

total length of the tube into high and low pressure regions equally. Table 2.3 shows the 

initial parameters declared in the simulation. Figure 2.3 compares the exact solution 

against the numerical solution. Figure 2.3 shows that using a second order method, the 

simulated results reasonably match with the exact solution for the length ratio of one. 
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Figure 2.2: Pressure versus time for different cell spacing 

 

Table 2.3: Parameter declaration for the validation study 

Parameters Values Units 

Ldr 0.5 m 

Ldn 0.5  m 

LR 1 - 

Resolution (spacing between each cell) 1.25 mm 

Specific heat (Cv) 716.4 J/kg-K 

Physical time of the simulation (t) 0.002 sec 

Order of method second - 

CFL 0.45 - 
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Figure 2.3: Comparison of the simulated results and the exact solution (t = 0.0006 sec) 
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2.7 Data processing 

Every shock tube problem pertaining to this research starts with the sudden 

exposure of the high pressure region to the low pressure region. The simulation, then, is 

allowed to run for a certain amount of time. The solver calculates the values of pressure, 

temperature, density, and velocity at every probe point specified in an input file at every 

timestep. An example input file of the shock tube problem is shown in Appendix A.3. 

Instead of recording the data at every single timestep, data are rather recorded at every 

few timesteps, the frequency of which can be adjusted in the input file. The data-file 

consists of the values of pressure, velocity, density, temperature, and spatial location at 

all specified times. The pressure profile against the time can be plotted directly from 

these files using GNUplot scripts. The values for peak pressure, positive phase duration, 

and negative phase duration are calculated from the same data files using Octave and C-

shell scripting. The Octave script is called in the C-shell script. The C-shell script 

browses through each data file while the Octave script performs the operations on that 

file to calculate peak pressure and positive and negative phase duration. Examples of the 

C-shell and Octave scripts can be found in Appendix A.3. 

 

2.8 Parameter study 

The ultimate purpose of the 1D shock tube simulation is to characterize the 

pressure wave inside the tube as a function of tube geometry and initial air properties. 

Among the four input physical parameters, only driver pressure is variable; all others are 

fixed. The variable geometrical input parameters are Ldr and Ldn. The experimental shock 

tube that is being used for this research is made with only Ldr as a variable geometric 
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parameter. As a result, the 1D shock tube was characterized using two input variables, Pdr 

and Ldr. Validation of the numerical code was carried out before the waves reached the 

boundaries. Once a boundary is reached, the defined boundary conditions begin 

influencing the results. Three possible boundary conditions were explored, but in the end, 

none of them could accurately replicate the environment of the open end tube. A detailed 

description of the study on boundary conditions is presented in Appendix A.1. The length 

of the tube chosen for the parameter study is 5 m. The length ratio refers to the ratio of 

the distance between any chosen point in the driven section of the tube and the diaphragm 

to the Ldr. The reason for choosing a long tube is to eliminate the influence of the 

boundary conditions at the open end. Using this approach, a shorter tube could be chosen, 

still stopping the simulation before the wave reaches the boundary, but then the negative 

phase duration that occurs at later times cannot be studied. 

 

2.8.1 Variation of Pdr 

In the experimental shock tube, the driver pressure most commonly used is 

approximately 700 psi. Hence, a driver pressure range of 600 to 900 psi (4830 to 6205 

kPa), with an increment of 50 psi (344.7 kPa), was chosen for the simulations. In the 

presented plots, the driver pressure values are expressed in kPa. Table 2.4 gives the input 

conditions. As was mentioned in Section 2.3, pressure is not entered into the input file but 

is calculated by the code using Equation 2.1. So, in Table 2.4, density in the HP region is 

the variable parameter. The data is collected at 0.5 m from the driver section end of the 

tube. Figure 2.4 plots peak pressure against driver pressure and shows that the peak 

pressure increases with driver pressure in an approximately linear fashion.  
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Table 2.4: Input parameters for the study of driver pressure variation 

Parameters Values Units 

Ldr 0.1 m 

Ldn 5 m 

LR 13.15 - 

Resolution (spacing between each cell) 1.25 mm 

Density in HP region (ρ) variable kg/m
3 

Specific heat (Cv) 743 J/kg-K 

Specific heat ratio (γ) 1.4 - 

Physical time of the simulation (t) 0.003 sec 

Order of method First - 

CFL 0.45 - 

 

 

Figure 2.5 shows the plot of positive phase duration against the driver pressure.  

The relationship between the two is nonintuitive. It starts with a linear increase of 

positive phase duration but then the slope of the line abruptly changes. To investigate this 

further, the pressure-time relationship was considered (Figure 2.6). From Figure 2.6 it is 

still not clear what is causing this difference as the pressure profiles look almost the 

same. It is clear, however, that differences in positive phase durations between the 

pressure profiles are very small. The positive impulse generated by these profiles is more 

or less the same. However, it is still not clear why positive phase duration varies 

bilinearly with driver pressure; this should be further investigated in the future.   
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Figure 2.4: Peak pressure versus driver pressure 

 

 

Figure 2.5: Positive phase duration versus driver pressure 
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Figure 2.6: Pressure versus time at different driver pressures 

 

Another point of interest in Figure 2.6 is that shock waves resulting from higher 

driver pressures travel with higher velocities. The shock wave in the case of 900 psi 

(6205 kPa) driver pressure arrives at the 0.5 m location earliest. 

Figure 2.7 shows the plot of negative phase duration against the driver pressure. 

Similar to the positive phase duration, the trend here is also bi-linear. The only difference 

is that negative phase duration decreases with driver pressure. The reason for this 

behavior is similarly unclear. 
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Figure 2.7: Negative phase duration versus driver pressure  

 

2.8.2 Variation of Ldr 

By changing only the driver section length, while keeping the total length of the 

tube constant, the difference in the pressure profiles of the shock wave due to the change 

in Ldr can be visualized. Table 2.5 indicates the input conditions. The study was carried 

out for the Driver length of 0.01, 0.02, 0.035, 0.05, 0.1, and 0.15 m. The first investigated 

characteristic of the shock wave is the peak pressure, Pmax. Figure 2.8 shows the pressure 

profiles at different Driver length, and the probe point chosen is 0.6 m from the 

diaphragm. It can be observed from Figure 2.8 that peak pressure goes on increasing until 

it attains the approximate value of 298 kPa and then remains constant with additional 

increases in driver length.  
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Table 2.5: Input parameter declaration for studying the driver length variation 

Parameters Values Units 

Ldr variable m 

Total length L 5 m 

LR variable - 

Resolution (spacing between each cell) 1.25 mm 

Specific heat (Cv) 743 J/kg-K 

Physical time of the simulation (t) 0.01 sec 

Order of method First - 

CFL 0.25 - 

 

 

 

Figure 2.8:  Pressure profiles for different driver lengths 
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The figure also shows that the shock waves with lower peaks rise at a later time 

than the ones that have attained the pressure of 298 kPa. In Equation 1.4, it was observed 

that the peak pressure is independent of the geometry of the tube, so these results were 

unexpected and prompted further investigation of possible sources of error in the code.  

 

2.8.3 Numerical errors 

 Study of potential numerical errors in the code was motivated by the parameter 

study. This section covers the classification of the numerical errors followed by the 

method used for analyzing them. 

 

2.8.3.1 The classification of errors  

Figure 2.9 illustrates the classification of the numerical errors. The governing 

equations used in this code are MPM-ICE equations [8], which have been previously 

used to solve the shock tube problem, so we can safely neglect the possibility of error 

caused by the governing equations. Boundary conditions are applied on the inlet and 

outlet of the shock tube. Applied inlet boundary conditions are appropriate for this study 

as explained in Appendix A.1. Outlet boundary conditions do not influence the solution 

until the shock wave reaches the end of the tube; this error study considers only the times 

before the shock wave reaches the outlet boundary.  

Out of the numerical errors shown in Figure 2.9, the three main sources of error 

occurring in Uintah computational framework are the error due to the spatial resolution, 

temporal resolution, and order of method. The temporal resolution in the code is 

governed by the CFL number. The lower the CFL number, the higher the temporal  
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Figure 2.9: Flowchart of possible errors in the numerical code 

 

resolution. The error caused due to the order of method is more predominant at peaks or 

discontinuities in the pressure profile.  

Thus, spatial resolution, temporal resolution, and the order of method were chosen 

for the error analysis study. The selected values for spatial resolution were 5 mm, 2.5 

mm, 1.25 mm, and 0.75 mm. For temporal resolution, the selected values for the CFL 

number were 0.45, 0.25, 0.15, and 0.08, and the orders of method used were first and 

second. A total tube length of 2.5 m and a LR of 2.4 were chosen for the analysis. The 

reason for choosing such a large LR was to allow reflected expansion waves to overtake 

the shock wave. The physical time of each simulation was 0.003 sec. To begin with, 

resolution, CFL, and order were chosen as indicated in Figure 2.10.  

Figure 2.10 shows the progress of the shock wave down the tube at different 

snapshots in time. The time interval between two successive snapshots is equal. It is clear 

that after approximately 1.5 m, the peak pressure starts decreasing. 
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Figure 2.10:  Pressure versus distance at different times 

 

Considering the properties of ideal gas and the inviscid flow assumptions employed in 

the code, this is unexpected. This decay in the peak pressure over the distance can be 

attributed to either the error in the code or some physical phenomena that is not yet 

understood.  

To investigate this further, spatial resolution and order of method were held 

constant while the CFL number was varied (Figure 2.11). As Figure 2.11 shows, there is 

a slight increase in the error between the two plots at the peak value over the time. 

However, in both cases, the pattern of decrement in the peak value along the length of the 

tube remains the same. Thus, the decrease in the peak pressure along the length of the 

tube is not dependent on the CFL number. 
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Figure 2.11: Pressure versus distance for different temporal resolutions 

 

Next, the same order of method and CFL with different spatial resolution was 

chosen (Figure 2.12). As the figure shows, there is no appreciable change in the pressure 

profile due to the higher spatial resolution, except that the smoothness of the curve is 

reduced due to higher accuracy achieved by higher resolution. Even though there is a 

small increase in peak value, it does not change the pattern of decrease in pressure over 

time and distance. Thus, it can be safely concluded that resolution is not the cause for the 

reduction in peak pressure along the length of the tube.  

Now, the same CFL and spatial resolution with different orders of method were 

chosen (Figure 2.13). Again, there is an overall slight increase in peak value but the 

pattern, of the decay of the peak pressure, remains the same.  
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Figure 2.12: Pressure versus distance with different spatial resolutions 

 

 

Figure 2.13:  Pressure versus distance using different order of method 
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The increase of pressure only at the peaks is a fundamental error of dispersion 

[17] associated with using the second order of method. Therefore, error induced due to 

order of method used is not the cause of decrease in pressure along the distance.  

Ultimately, it was decided to compare the accumulated errors caused by the three 

sources of errors. Figure 2.14 is the plot of comparison of two extreme conditions where 

all three parameters are different. It is shown that when the error due to all three 

parameters is combined, it is significant and can be clearly seen in Figure 2.14. However, 

even with a spatial resolution of 0.75 mm, second order and CFL of 0.08, the decrement 

in the peak value is still seen after the same distance of 1.5 m.  

It can be concluded that coarse resolution, first order of method, and lesser 

timesteps do indeed induce error in the solution. 

 

 

Figure 2.14: Pressure versus distance with all parameters different 
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This error becomes smaller and smaller with finer resolution, more timesteps, and 

use of higher orders of method, but it is clear that these parameters do not influence the 

demonstrated reduction in peak pressure.  

As explained in Chapter 1, expansion waves overtake and degrade the shock 

wave, so further investigation was carried out to confirm that it is the physics of the 

shock tube which is reducing this peak over time (Figure 2.15). In Figure 2.15, there are 

flat portions behind the shock waves at different distances. Their lengths are noted by a0 

to a4. It can be seen here that, a0>a1>a2>a3>a4. The flat portion a4 is very short, and the 

flat portion is eliminated altogether shortly after this point.  

 

 

 

 

a0 a1 a2 
a3 

a4 

Figure 2.15: Shock wave in the shock tube at different instances in time 
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When the flat portion disappears, peak pressure starts decreasing. This is the point 

where the reflected expansion waves start overtaking the shock front. The continuous 

decrease in the length of the flat region is a result of the reflected expansion waves 

having velocities higher than the compression wave. The decrease in the peak value along 

the length of the tube is also the result of expansion waves overtaking the shock waves. 

Referring back to Figure 2.8, it is now clear that the lower peaks corresponding to 

the shorter Driver length are due to the expansion waves. Expansion waves propagate in 

the direction opposite that of shock waves and reflect from the closed end of the tube. 

Lower Driver length offers expansion waves a smaller distance to travel and hence 

overtake the shock waves earlier, as shown in Figure 2.16. A few observations can be 

noted from Figure 2.16. 

 

 

Figure 2.16: Pressure versus time at two different locations 

At X = 2m 

   t1    t2 

At X = 0.5m 

m0.5m 
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At location x= 0.5 m from the diaphragm, the arrival of the shock front for both of 

the driver lengths occur at the same time; the peaks are identical too, but at x= 2 m from 

the diaphragm, the shock wave resulting from 0.05 m Ldr is overtaken by the expansion 

wave, and hence, slowed down. Ratios of these distances (0.5 and 2 m) to Driver length 

are the instantaneous length ratios.   

Also, the positive phase durations of the shock waves increased over time (e.g. t2 

> t1). At x = 0.5 m, the positive impulse is dominated by the peak pressure while as the 

probe point is moved down the tube, the trend is changing where the impulse is 

dominated by the positive phase duration.  

 

2.8.3.2 Over-shoot error study 

The preceding section makes it clear that the cause of the degradation of the peak 

value is expansion waves and not a numerical error. However, there is a significant error 

associated with the peak value in the numerical simulations. The Uintah computational 

framework currently has a bug that results in an error at discontinuities while solving a 

problem.  

As explained in the first chapter, a shock is a discontinuous phenomenon, so the 

error influences the peak pressure value. A fix to this error has been programmed using 

MATLAB.  Figures 2.17 and 2.18 compare the error in the numerical simulation with the 

applied fix for the first and second order of method, respectively.    
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Figure 2.17: Comparison of the over-shoot error with its fix; first order 

 

 

Figure 2.18: Comparison of the over-shoot error with its fix; second order 
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In both Figures 2.17 and 2.18, three plots are shown. The one captioned as “no 

fix” is plotted directly from the data-file generated by the simulation. Current 

implementation of ICE only considers internal energy (e) and not the total energy. Total 

energy is the addition of internal energy and kinetic energy. The MATLAB code 

including the “total energy fix” considers the term related to kinetic energy, and accounts 

for the time difference between the peak with no fix and the peak with the total energy 

fix. The last fix applied is called the “limiter.” For discontinuous phenomena like shock, 

this fix applies limits. When the pressure value increases beyond the peak, it just cuts off 

the values above the limit. It can be observed from Figures 2.17 and 2.18 that the error is 

larger in the case of second order (11.93%) than first order (3.27%). Even though the fix 

has been programmed in MATLAB, it is not yet implemented into the production code 

ICE and thus, this error will be seen in the forthcoming chapters too.  

 

2.9  Discussion of the 1D study 

The intention of doing research on the 1D shock tube was to understand the 

characteristics of the shock wave inside of the tube and to develop intuition for variation 

in the shock tube parameters. The boundary conditions play a major role in any numerical 

simulation. However, as none of the available boundary conditions replicate the 

environment of the open end tube, we decided to use a longer tube with a simulation time 

short enough to eliminate contributions from the boundary. Results show that peak 

pressure increases linearly with the driver pressure. The graphs of positive and negative 

phase durations do not have linear relationship with the driver pressure throughout; these 

phenomena need more investigation. Nevertheless, the impulses generated for different 
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driver pressures are more or less the same. The nature of the shock or blast wave is highly 

dependent on the driver section length (or instantaneous length ratios) of the tube.  Low 

LRs do not give the expansion wave sufficient time to overtake the shock wave. High 

LRs allow the expansion waves to overtake and degrade the shock, potentially to the 

point where it has lost much of its strength by the time it reaches its destination. An 

optimal LR is thus desired.  



 

 

 

 

3 TWO-DIMENSIONAL SIMULATIONS 

3.1 Introduction 

In Chapter 2, the shock wave behavior inside the tube was characterized through 

1D simulations. However, the area of interest for experimentation is outside the tube, 

where the shock expands axisymmetrically into 3D space. Because of this symmetry, the 

full 3D behavior could be modeled with a 2D code enforcing an axisymmetry condition. 

However, the code utilized for this study is currently not available in cylindrical 

coordinates. As a result, the problem was explored using the 2D code in rectangular 

coordinates, recognizing that results would not be quantitatively accurate but anticipating 

that trends could still be accurately simulated.  

This chapter principally covers objectives (Sections 3.2), geometry and input 

parameters (Section 3.3), resolution study (Section 3.5), validation of the code (3.6), and 

finally, the results of the simulations (Section 3.8).   

 

3.2 Objective of the 2D simulations 

In Chapter 2, the parameter study was carried out inside the shock tube. In this 

chapter, the focus is moved outside the end of the tube. The procedures followed for the 

parameter study are similar to those in the previous chapter. The purpose of generating a 

blast wave experimentally is to study its ability to produce brain injury in an animal 

model. In addition to the parameter study, another objective of 2D simulations is thus to 
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identify the appropriate region for testing outside the shock tube (Section 1.5). These 

objectives are discussed in the Results section of this chapter.  

 

3.3 Defining geometry and input parameters 

3.3.1 Theoretical geometry of 2D shock tube 

The theoretical 2D shock tube is similar to the theoretical 1D shock tube, except 

that it has a diametrical dimension, which results in a 2D computational space. Figure 3.1 

is an illustration of the theoretical 2D shock tube. In Chapter 2, the characteristics of the 

shock were analyzed along the axis of the tube. In the 2D shock tube simulation, the area 

of interest is not along the axis of the tube but is, rather, at an off-axis position to prevent 

the target from being affected by the exhaust gas vent.  

 

3.3.2 Geometry defined in 2D simulations 

Although the shock expands axisymmetrically outside the tube, the numerical 

shock tube is here modeled as being symmetric about its longitudinal axis (Figure 3.2). In 

the Figure, Ldr and Ldn are the driver and driven sections, respectively. Ldr is treated as a 

variable that changes from 4 to 10 cm in increments of 2 cm, while Ldn is fixed. 

 

 

Figure 3.1:  Theoretical geometry of 2D shock tube 

θ 
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Figure 3.2:  Geometry of shock tube defined in numerical simulation 

 

The experimental shock tube has a diameter of 2.54 cm (or 1”) and a wall thickness of 

7.3 mm. The shock tube wall is made of a rigid material, so there is no deformation of the 

shock tube wall despite the high pressure generated inside the tube. The origin of the 

coordinate system is chosen at the outlet of the tube, on the tube axis. The computational 

domain is a rectangular area of 200 cm x 40 cm, which is big enough to not affect the 

area of interest due to the reflection of the pressure wave from the boundaries.    

An enlarged view of the box indicated in Figure 3.2 is shown in Figure 3.3. It 

shows the locations of the probe points placed outside the tube for data recording. As 

seen in Figure 3.3, the probe points are at angles 30⁰, 45⁰, 60⁰, and 75⁰ with radii ranging 

from 2 to 14 cm in increments of 2 cm.  

 

3.4 Governing equations 

The governing equations used are the two-dimensional MPM-ICE equations as 

specified by Equations 1.8 – 1.10 in Chapter 1. 
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Figure 3.3:  Probe points outside the tube 

 

3.5 Resolution study 

In this section, a study seeking the appropriate resolution for the 2D shock tube 

simulation is described. Because the major area of interest is outside the tube, the 

resolution study is carried out at the probe point of 30⁰ and 5 cm. There is no specific 

reason for not choosing one of the radii mentioned in Figure 3.3. For the resolution study, 

as long as the chosen probe point is outside the tube, it does not make any difference 

what radius and angle it is at. Table 3.1 gives the input parameters used for this study. 
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Table 3.1: Input parameter declaration for the resolution study 

Parameters Values Units 

Ldr 0.1  m 

Ldn 0.9  m 

LR 9 - 

Finest Resolution (cell spacing) variable mm 

Density in HP region (ρ) 11.76 kg/m
3 

Density in LP region (ρ) 1.176 kg/m
3
 

Temperature in HP region (T) 300 K 

Temperature in LP region (T) 300 K 

Specific heat (Cv) 716.4 J/kg-K 

Specific heat ratio (γ) 1.4 - 

Physical Time of the simulation (t) 0.00325 sec 

Order of method First - 

CFL 0.45 - 

 

 

Out of the parameters displayed in Table 3.1, the density and temperature in both 

the high pressure and low pressure region are the same for all other simulations. Also, the 

specific heat ratio remains the same. In similar subsequent tables, only parameters that 

differ from those in Table 3.1 are displayed. 

From Figure 3.4, it can be seen that as the spacing between cells decreases, the 

solution converges. For the spacing of 1.25 mm and 0.625 mm, pressure profiles almost 

overlap each other. Thus, spacing of 1.25 mm was chosen for further study. 
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Figure 3.4:  Results of the resolution study in 2D 

 

As resolution is increased, simulation time naturally increases, and more 

computer memory is required. To help alleviate these effects, the AMR (Adaptive Mesh 

Refinement) feature available in the code was utilized. According to AMR, the grid 

would refine itself once pressure values increase beyond a threshold value. This threshold 

value is set in an input file of the simulation. In this way, only the cells on which the 

pressure value increases beyond the threshold value would refine and adopt the higher 

resolution. Three levels of resolution were defined. On the coarse level (level 0), the cell 

spacing was 20 mm. The ratio between successive levels was set at 4:1, yielding cell 

spacing for levels 1 and 2 equal to 5 and 1.25 mm, respectively. 
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3.6 Validation of the 2D code 

Before using the code for further simulations, an important step of validating the 

code is necessary. The problem used for validating the code is different than the shock 

tube problem, though the code used for both problems is the same. The problem used is 

the explosion of a fireball in 2D. 

 

3.6.1 Description of the explosion problem 

The geometry of the problem is shown in Figure 3.5. The circular region at the 

center of the domain, called the “fireball,” is at relatively high pressure and density at 

time t = 0.  

 

 

 

Figure 3.5:  Geometry of the explosion problem 

Computational domain 

Fireball 
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The computation domain is divided into two regions: a box of 2 x 2 x 0.1 and the fireball 

with a radius of 0.4. Any unit system can be used to specify the units of the physical or 

geometrical quantities. The initial conditions inside of the circular region are (p = 1, ρ = 

1, u = 0, v = 0) and outside (p = 0.1, ρ = 0.125, u = 0, v = 0). Once the simulation begins, 

the expansion of the high-pressure gas forms a circular shock wave and a contact surface 

that expands axisymmetrically into the atmosphere. At the same time, a circular 

rarefaction wave travels towards the origin. The fluid is modeled as an ideal, inviscid, 

polytrophic gas. Table 3.2 specifies the other initial parameters.  

 

Table 3.2: Initial parameters for the explosion problem  

Parameters Values Units 

Fireball radius 0.4 units 

Computational domain 2 x 2 x 0.1 units 

Finest Resolution (Cell Spacing) 0.00125  units 

Density in fireball (ρ) 1 units
 

Density in the box (ρ) 0.125 units 

Temperature in HP region (T) 2.5 units 

Temperature in LP region (T) 2.0 units 

Specific heat (Cv) 1 units 

Specific heat ratio (γ) 1.4 - 

Physical Time of the simulation (t) 0.25 units 

Order of method second - 

CFL 0.4 - 
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3.6.2 Exact solution  

In Figure 3.5, the explosion of the fireball is axisymmetric, and therefore, the 

Riemann problem is simplified to the 1D problem in cylindrical coordinates [18]. The 

exact solution of the explosion problem is solved using the HLLC Riemann solver [19].  

 

3.6.3 Validation against the exact solution 

Figure 3.6 is the plot of the exact solution against the numerical solution for the 

“explosion” problem. The x-axis is the perpendicular distance from the center of the 

fireball to the wall of the box. The data are presented for t = 0.25. The L-0, L-1, and L-2 

are the different levels of the AMR grid, as explained in Section 3.5. The data on L-2, 

which is the level of finest resolution, match the exact solution reasonably well, so it is 

clear that the numerical code can safely be used for further study.   

 

3.7 Data processing 

The data files generated after running 2D simulations store the same variables as 

the data files of 1D simulations, so similar scripts were used to process the data. An 

example of the input file for the 2D shock tube problem is shown in Appendix A.3. In the 

case of the 2D problem, an additional approach for visualizing results was incorporated, 

using the tool called VISIT. VISIT is a visualization tool for the analysis of data defined 

on 2D and 3D structured meshes. In VISIT, the progress of physical parameters can be 

monitored in both space and time. It is a powerful tool for understanding intricate 

phenomena like the expansion of high pressure gases.  
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Figure 3.6:  Comparison of the explosion problem with the exact solution (t = 0.25 units) 
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3.8 Results 

The objectives of these simulations are to prevent significant target interaction 

with venting gas and develop an intuition about the peak pressure, positive impulse, and 

negative impulse at a desired point in a space based on input parameters. The input 

parameters, here, refer to those parameters that are in control of the user, viz. Ldr and Pdr.   

 

3.8.1 Quantifying an area where target is not affected 

 by the exhaust gas vent 

Figure 1.9 illustrates approximate boundaries for an appropriate testing region. 

This region is quantified in this section in detail. The initial parameters utilized for this 

research are displayed in Table 3.3.  The gas in the driver section is Nitrogen and its 

Specific heat (Cv) is 743.0 J/kg-K. The density in the HP region is denoted as 54.1311 

kg/m
3
. Using the ideal gas law (Eq. 2.1), the pressure is 700 psi (4826.33 kPa). The value 

700 psi (4826.33 kPa) is the most common driver pressure used currently in the 

experimental setup. Other parameters are listed in Table 3.3. 

The appropriate region for placing the target was determined by evaluating 

pressure versus time at given locations and through the visualization of the velocity field 

outside the tube using VISIT. Figure 3.7 shows an example contour plot of the velocity 

field in the VISIT visualization window. This window shows the whole computational 

domain, similar to the one shown in Figure 3.2. This visualization of the velocity is a 

snapshot taken at the physical time of  0.00240016 sec. Velocity magnitudes are shown in 

different shades of colors, blue being the minimum velocity and red being the maximum 

velocity. The shock tube wall cannot be seen in VISIT, since the velocity of the wall is 

zero; hence, it is merged with the blue color outside. 
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Table 3.3: Initial parameter for quantifying the region for testing 

Parameters Values Units 

Ldr 4 cm 

Ldn 131.45 cm 

LR 32.8625 - 

Finest Resolution (Cell Spacing) 1.25 mm 

Density in HP region (ρ) 54.1311 kg/m
3 

Density in LP region (ρ) 1.176 kg/m
3
 

Specific heat (Cv) 743 J/kg-K 

Physical Time of the simulation (t) 0.003 sec 

Order of method Second - 

CFL 0.4 - 

 

 

 

 
 

 

Shock 

tube 

Wall 

Computational 

domain 

Physical time 

Exhaust gas vent Blast 

Wave 

Vortex 

 

Figure 3.7: Visualization of the magnitude of the velocity field using VISIT 
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The part of wall is drawn using the drawing feature in MS Word. The scale along the X 

and Y axis is in meters.  

It was mentioned earlier that the shock wave expands outside the tube 

axisymmetrically. In Figure 3.7, the velocity associated with the wave is shown. The red 

color area is the region of highest velocity and is the exhaust gas vent.  As shown, a 

vortex is also generated. Figure 3.8 is the zoomed in view of the area outside the tube 

shown in Figure 3.7. It is clearly seen in Figure 3.8 that the region below the line at 30⁰ is 

dominated by the exhaust gas vent. Above the exhaust gas vent, a circular vortex region 

generated. It has been observed that the center of the vortex is the area of lowest pressure, 

lowest density, and lowest velocity. 

 

 
 

75⁰ 60⁰ 

45⁰ 

30⁰ 
14cm 

12cm 

10cm 

  8cm 

  6cm 

  4cm 

  2cm 

Center of the vortex 

Figure 3.8: Zoomed view of Figure 3.7 with the geometry drawn 
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The vortex, when it forms, is not as significant as in Figure 3.8. Therefore, it is necessary 

to draw these contour plots at earlier times. Figure 3.9 shows the contour plot at t = 0.002 

sec. In Figure 3.9, at t = 0.002 sec, and at radii of 2 cm and 4 cm, the area under the line 

at 45⁰ is in the exhaust gas vent. In Figure 3.8, the exhaust gas vent has cleared of 

locations (4, 30)
1
 and (4, 45). The lines 60⁰ and 75⁰ are always clear of the exhaust gas 

vent, which seems therefore like a potential region for testing. 

 

    

                                                 

1
 Locations specified here are in polar coordinates. 

For example: (4, 30) implies radius of 4 cm at 30⁰. 
 

75⁰ 60⁰ 

45⁰ 

30⁰ 

6 cm 

4 cm  

2 cm 

Figure 3.9: Contour plot of the magnitude of the velocity field at t = 0.002 sec 
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The vortex formed at this time has no noteworthy influence on its surroundings 

compared to the one shown in Figure 3.8. Hence, in Figure 3.10, the contour plot of the 

magnitude of velocity field at t = 0.00212 sec is shown. 

It can be observed in Figure 3.10 that the region above the line at 45⁰ is free of the 

highest gas velocities. Some of the region between lines at 30⁰ and 45⁰, and the region 

beneath the line at 30⁰, are in the exhaust gas vent. So, it seems that the line at 30⁰ is 

always in the exhaust gas vent, and hence, the target should not be placed in that region.  

The vortex has grown bigger compared to Figure 3.9, and some areas at 45⁰ and 60⁰ are 

in the vortex. 

 

 

 

75⁰ 60⁰ 

45⁰ 

30⁰ 

8 cm 

6 cm 

4 cm  

2 cm 

Figure 3.10: Contour plot of the magnitude of the velocity field at t = 0.00212 sec 

t = 0.00212 sec 
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It is important to determine whether the vortex has any effect on the pressure 

profile desired in this research. Therefore, the pressure profile is studied in Figures 3.11 – 

3.14. The pressure profiles at 45⁰, 60⁰, and 75⁰ exhibit desirable blast wave 

characteristics, with Friedlander-like positive and negative phases at all radii [4]. This 

area thus seems desirable for target placement. It can be clearly seen from the figures that 

as angle increases, the peak pressure and the phase durations decrease. Also, as the radial 

distance increases, peak pressure goes down.   

In Figures 3.11 – 3.13, the region between the lines at 0⁰ and 30⁰ is dominated by 

the exhaust gas vent. In Figure 3.13, there are two pressure spikes indicated as P1 and P2. 

Figure 3.15 offers an explanation.  

 

 

Figure 3.11: Pressure versus time at 2 cm outside the tube 
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Figure 3.12: Pressure versus time at 4 cm radius outside the tube 

 

 

 

P1 

P2 

Figure 3.13: Pressure versus time at 6 cm radius outside the tube 
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Figure 3.14:  Pressure versus time at 8 cm radius outside the tube 

 

In Figure 3.15, it is clear that pressure peak P1 corresponds to the blast wave 

pressure. As the wave passes, the pressure at that location starts going down until it 

attains the value of P2. Behind P2, there is a high velocity exhaust gas vent. The fact to be 

noted here is that the exhaust gas vent has a very high velocity but a very low pressure. 

This pattern of two peaks actually starts at r = 4 cm (see 0⁰ and 30⁰ plots in Figure 3.12).  

In Figure 3.14, only one peak P1 is seen for (8, 30). The reason is that the angle of 

the gas vent continuously decreases and the region along the line at 30⁰ is eventually 

clear of the exhaust gas vent. This is confirmed in Figure 3.8, where the line at 30⁰ is 

completely cleared of the red area. As a result, the line at 30⁰ would be appropriate for 

testing at farther locations, though the strength of the blast would be low.  
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Figure 3.15: Visualization of velocity and pressure at t = 0.00214 sec 

 

The vortex does not have a large effect on the pressure profiles, except that the 

negative phase of the blast wave is perturbed in a small amount. Plots presented in this 

thesis show only a static pressure measurement. The stagnation pressure additionally 

considers the effects of kinetic energy. The small region around the vortex is at low 

pressure but high velocity, as seen in Figure 3.15. However, the velocity in that region is 

not as high as the velocity of the exhaust gas vent. Therefore, to understand the 
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phenomenon of the vortex better, the total energy approach is needed in future. Also, an 

experimental investigation is required to evaluate this region for testing.   

From Figure 3.8 – 3.10, it can be observed that the probe points at (2, 30) and (2, 

45) are always in the exhaust gas vent. Their pressure profiles in Figure 3.11, however, 

look very smooth. Despite this, the region below the line at 45⁰ is not recommended for 

testing due to the presence of the vent. The probe points at (2, 60) and (2, 75) are very 

close to the tube and not in the exhaust gas vent, and hence, could be included in the 

potential testing region if higher peak pressures are desired.    

 

3.8.1.1 Conclusions 

 For all radii greater than 2 cm, the region above the line at 45⁰ is clear of the 

exhaust gas vent and is thus appropriate for testing. 

 The region below the line at 30⁰ is influenced by the exhaust gas vent at most 

times.  

 Due to the reduction in the vent angle over time, the region along the line at 30⁰ is 

eventually free of the exhaust gas vent at large radii (above 8 cm), but the strength 

of the blast wave is low at these larger distances.  

 The vortex does not seem to be disturbing the pressure profile significantly, 

though the total energy approach is needed to understand the phenomena better. 

 The recommended region for testing is shown in Figure 3.16 
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Figure 3.16: Quantified region for testing from 2D simulations 

 

3.8.2 Parameter study 

A parameter study is carried out taking into account the findings of the tube 

venting study, so only probe points along the lines at 45⁰, 60⁰, and 75⁰ are considered. 

The parameter study is divided into the following three types. 

 Choosing one driver length and driver pressure, and then observing the change in 

the blast wave over the entire field outside the tube.  

 Choosing one point in space and observing the characteristics of the blast wave at 

that point for different driver lengths. 

 Choosing one point in space and observing the characteristics of the blast wave at 

that point for different driver pressures. 
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Dependent variables studied were peak pressure and positive phase duration. The 

negative phase duration was not studied because it is perturbed by the vortex, and hence, 

not smooth (Figures 3.11 – 3.14).  

 

3.8.2.1 Study over the entire field 

The entire field here refers to the region between the line at 45⁰ and 75⁰ for all 

radii. Table 3.3 indicates the initial parameters chosen for this study. It can be observed 

from Figures 3.11 – 3.14 that as the probe point is moved farther from the origin of the 

tube, peak pressure goes down. Also, as angle increases, peak pressure goes down. These 

are the intuitive observations from Figures 3.11 – 3.14. Figures 3.17 – 3.18 are the 

contour plots of pressure in the field outside the tube for the radii 4 cm and 8 cm, 

respectively. These plots help illustrate trends in peak pressure over the entire field. 

Pressure contours for other Driver length are shown in Appendix A.2.  

The positive impulse carried by the blast wave is a function of both peak pressure 

and positive phase duration. Figure 3.19 shows that positive phase duration increases 

with radius, even though the peak pressure goes down with it. As described in Section 

2.8, the wave speed decreases with distance from the origin due to the expansion waves 

catching the shock front. This increases the positive phase duration of the wave. Figure 

3.20 shows a contour plot of the positive phase duration over the region for testing. As 

positive impulse is proportional to the product of the peak pressure and positive phase 

duration, the results obtained from Figure 3.17 and Figure 3.20 infer that different 

combinations of peak pressure and positive phase duration can be used to obtain different 

and/or similar impulses dominated by either peak pressure or positive phase duration, or 

both, during experiments.  
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Figure 3.17: Contour plot of the peak pressure in the field outside the tube; Ldr = 4 cm 

 

 

Figure 3.18: Contour plot of pressure in the field outside the tube; Ldr = 8 cm 
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Figure 3.19: Positive phase duration versus radius at different angles 

 

 

Figure 3.20: Positive phase duration (sec) in the field 
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3.8.2.2 Parameter study with different driver lengths 

The driver section length is one of the independent variables that are under 

experimental user control. Input parameters for this study were the same as those 

presented in Table 3.3, with Ldr being the variable. The probe point chosen for the study 

is (4, 60).  

Figures 3.21 – 3.22 show the variation of peak pressure and positive phase 

duration with Ldr. These two plots are practically mirror images of each other. The driver 

length with the lowest peak pressure has the highest positive phase duration. As discussed 

in Section 2.8, this can be attributed to expansion waves more rapidly overtaking the 

shock wave in cases with lower Ldr. Hence, the peak value is lowest for Ldr = 4 cm, but 

the t-positive corresponding to the same Ldr is highest for the same reason. However, both 

peak pressure and positive phase duration are unchanged for Ldr of 8 and 10 cm. The 

reason for this is that the expansion waves have not yet overtaken the shock front in 

either case.  

 

 

Figure 3.21: Peak pressure versus the driver length at (4, 60) 
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Figure 3.22: Positive phase duration versus the driver length at (4, 60) 

 

3.8.2.3 Parameter study with different driver pressure 

Another controllable variable is the driver pressure. Table 3.4 shows the initial 

parameters to study the influence of this variable. Peak pressure (Pmax) increases linearly 

with driver pressure (Pdr) (Figure 3.23), while positive phase duration decreases with the 

same (Figure 3.24). As shown, the decrement in the positive phase duration, with respect 

to the Pdr, is small. For an increase in 50 psi (344.7 kPa), the reduction in the positive 

phase duration is 0.001 ms. The time axis scales in Figure 3.22 and Figure 3.24 are 

intentionally the same to compare the influence of Ldr and Pdr on positive phase duration.  

 

 

 

 

 

 

5.7E-05

5.9E-05

6.1E-05

6.3E-05

6.5E-05

6.7E-05

6.9E-05

7.1E-05

7.3E-05

4 6 8 10

t-
p

o
si

ti
v
e 

(s
ec

)

Ldr (cm)



78 

 

 

 

Table 3.4: Initial parameter declaration for the variable Pdr study 

Parameters Values Units 

Ldr 8 cm 

Ldn 131.45 cm 

LR 16.43 - 

Finest Resolution (Cell Spacing) 1.25 mm 

Density in HP region (ρ) variable kg/m
3 

Specific heat (Cv) 743 J/kg-K 

Physical Time of the simulation (t) 0.003 sec 

Order of method second - 

CFL 0.4 - 

 

 

 

Figure 3.23: Peak pressure versus the driver pressure 
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Figure 3.24: Positive phase duration versus the driver pressure 

 

3.9  Conclusions 

 The region above the line at 45⁰ is the recommended region for testing. 

 As shown in the results, the region below the line at 30⁰ is in the exhaust gas vent, 

so it is recommended to avoid that region. At more distant locations, the exhaust 

gas vent does not influence the region along the line at 30⁰, but the strength in the 

blast wave is decreased. 

 Increasing the driver pressure increases the strength of the blast wave by 

increasing the peak pressure. 

 Lower driver length results in longer positive phase durations and lower peak 

pressures, while higher Pdr results in higher peak pressures. Using combinations 

of both Ldr and Pdr, different impulses can be obtained.  
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4 INTRODUCTION TO 3D SOLUTION 

4.1 Introduction 

 

While the 1D simulations described in Chapter 2 produced an exact solution for 

shock wave phenomena inside the tube, it is clear that 2D simulations of a wave exiting 

the tube, described in Chapter 3, could not be expected to produce quantitatively accurate 

results for a naturally 3D problem. As previously stated, however, it was determined that 

an understanding of general trends could be accurately and more efficiently explored 

using the 2D simulations. In order to define the magnitude of error associated with the 2D 

simulations, 3D simulations were briefly investigated. This chapter gives only a brief 

introduction to the 3D approach and recommends some ideas for future implementation. 

Equations 1.8 – 1.10 are the governing equations utilized for the 3D shock tube problem. 

Input parameters used for both 2D and 3D simulations are almost the same as listed in 

Table 3.3.except that the value of driver length chosen is 6 cm.  

 

4.2 Comparisons between 2D and 3D simulations 

4.2.1 Comparison between 2D and 3D geometry 

In Figure 4.1, the geometry of the 2D and 3D problems is shown in the YZ plane 

where the X axis, the axis of the shock tube, is perpendicular to the paper. The 2D shock 

tube is limited to the XY plane; the thickness in the Z direction shown in the 2D portion  
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of Figure 4.1 is the width of a single cell. The Uintah computational framework is 

programmed in such a manner that cells need to have all three dimensions regardless of 

the dimension of the problem. With just one cell in the Z direction for the 2D case, there 

is no transport of any fluid property in the Z direction and the problem remains 2D. In the 

case of 3D, one quarter of the cylindrical shock tube is defined, with symmetry boundary 

conditions on the Y- and Z- faces as it can be seen in Figure 4.1. 

 

 

2D 3D 

Figure 4.1: Geometry comparison of 2D and 3D shock tube problem 
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4.2.2 Comparison between 2D and 3D results 

Figure 4.2 shows a comparison of pressure profiles at a location of 4 cm and 60⁰ 

from the origin of the tube for the 2D and 3D simulations. There is clearly a large 

difference between the peak pressures. Also, the pressure profile for the 3D case lags that 

of the 2D. Referring to Figure 4.1, the region available outside the tube for the expansion 

of high pressure gases is obviously different in 3D than in 2D. The volume through which 

the pressure wave passes is greater in 3D than in 2D for the same radial location outside 

the tube. Hence, the expansion in 3D space occurs more rapidly than in 2D space, which 

reduces peak pressure and wave velocity.       

 

 

Figure 4.2: Comparison of pressure profiles from 2D and 3D models at a location 4 cm 

and 60⁰ from the end of the tube 
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While a difference in quantitative results was expected, further comparison was 

performed to determine whether the trends, identified using the 2D model, were 

appreciable. Figure 4.3 and Figure 4.4 show plots of peak pressure and positive phase 

duration against the radius along the 45⁰ line, respectively. In Figure 4.3, a nearly 

constant offset is seen in the peak pressures obtained from 2D and 3D simulations. A 

similar plot along the 60⁰ line is shown in Appendix A.2. Figure 4.4 shows that there is 

also a significant difference in positive phase duration between 2D and 3D simulations. 

In 2D, the relationship between positive phase duration and radius is approximately linear 

while in 3D, it is nonlinear. It is encouraging, however, to note that overall trends for 

both peak pressure and positive phase duration, as a function of radius, are similar for 

both simulation approaches. Trends of positive phase duration in the 3D simulations are 

shown in Figure 4.5. 

 

 

Figure 4.3: Peak pressure versus radius at 45⁰; 2D versus 3D results 
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Figure 4.4: Positive phase duration versus radius at 45⁰; 2D versus 3D results 

 

 

Figure 4.5: Positive phase duration (sec) in the field 
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Further evaluation of 3D results shows that the region-for-testing identified in 

Chapter 3 is reasonable because the exhaust gas vent similarly expands in the form of a 

conical jet. Figures 4.6 – 4.7 show 2D and 3D contour plots of the velocity magnitude at 

nearly the same simulation time. In the case of 2D, the velocities of the pressure wave 

and the exhaust gas vent are both higher than in the 3D simulations. The shape of the 

exhaust gas vent in both cases is conical, but the angle the jet makes with the horizontal is 

smaller in the case of 3D than 2D. This indicates that the region for testing is actually 

wider in reality, including more area closer to the tube axis, than what is predicted by 2D 

simulations, so the earlier recommendations can be considered conservative. The lines at 

45⁰, 60⁰, and 75⁰ were already recommended for testing. Future work should investigate 

the line at 30⁰ for reasonable inclusion into the testing region.   

 

 

Figure 4.6: Magnitude of velocity in 2D simulation 
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Figure 4.7: Magnitude of velocity in 3D simulation 

 

4.3 Additional results from 3D simulations 

While 3D results have already been discussed in comparison with 2D results, 

some additional discussion of 3D findings is helpful. Figure 4.8 shows a contour plot of 

pressure over the whole 3D domain at the time 0.00214 sec. The thick line is the shock 

tube wall. The vertical slab downstream of and perpendicular to the tube axis is a slice 

taken to facilitate further visualization of the phenomena outside the tube. Figure 4.9 

shows the pressure values on this slice.   

The blast wave, exhaust gas vent, and shock tube wall are indicated in Figure 4.9. 

The blast wave shown in Figure 4.9 appears to be axisymmetric about the x-axis, 

meaning that the pressure profile does not change about the x-axis of the tube. It thus can 

be concluded that the imposed symmetry boundary conditions are performing accurately.  
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Figure 4.8: Contour plot of pressure in 3D at 0.00214029 sec  

 

 

Figure 4.9: Projection on the slice indicated in Figure 4.8 
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4.4 Discussion 

Considering the code is free of bugs, the 3D approach simulates reality more 

accurately than the 2D approach. However, research carried out with the 2D approach is 

useful for understanding the physical phenomena of the tube because it provides a 

reasonable estimate of variable relationships and behavior.  

 

 

 

 

 



 

 

 

 

5 SUMMARY, CONCLUSIONS, AND FUTURE WORK 

The preceding chapters present results from computational models simulating 

flow of high pressure gas inside and outside of a compressed gas-driven shock tube. A 

summary of results, conclusions, and recommendations for the continuation and 

advancement of this research are given in the present chapter.  

 

5.1 Summary 

This research on shock tubes stems from rising concern about blast-induced 

traumatic brain injury (TBI). It has been hypothesized that brain tissue is damaged by the 

pressure wave generated during a blast, but the mechanism of tissue injury is unknown. 

The pressure wave produced by a typical explosion includes a peak pressure, or 

overpressure, and positive and negative pressure phases; each component of this blast 

wave may make a unique contribution to injury. A simple device called a shock tube is 

capable of generating the characteristics associated with the blast wave. A computational 

model of a shock tube is helpful in experiment design and interpretation.  

The formation and advancement of a shock wave inside a tube is characterized 

using a 1D shock tube simulation, described in Chapter 2, while the expansion of the 

shock wave outside the tube is characterized using 2D simulation, described in Chapter 3. 

These simulations are helpful in understanding the influence of experimentally-

controllable parameters on peak pressure, positive impulse, and negative impulse of the 
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resulting pressure wave. In the experimental shock tube, driver pressure and driver length 

may be varied. Different impulses can be obtained by varying these two parameters and 

by changing the location of the target in the field. The 2D shock tube simulation is 

investigated for another significant purpose – to explore the influence of primary blast 

injury, due to the high pressure wave alone, in the absence of other forces. It was thus 

important to estimate a region-for-testing that is clear of exhaust gas venting from the 

tube after passage of the pressure wave.  

Two-dimensional simulations were carried out to understand the general trends of 

the blast wave characteristics for a naturally 3D problem. Hence, the accuracy of 2D 

simulation results was tested by comparing it with one 3D simulation. Results were 

presented in Chapter 4.  

 

5.2 Conclusions 

 The approximate region for testing was quantified in Chapter 2. The region above 

the line at 45⁰ is the recommended region for testing. Below the line at 45⁰, the 

exhaust gas vent complicates the loading conditions. The exhaust gas vent 

expands outside the tube in a conical shape. The angle of the cone with the 

horizontal continuously decreases as it progresses in open space. At later times, 

the vent clears of the line at 30⁰ and so at the distance from 8 cm onwards from 

the origin of the shock tube, a testing sample can be placed along the line at 30⁰. 

However, in the case of 3D simulations, the usable area is actually wider, 

including some of the region below the line at 45⁰.  
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 Peak pressure increases linearly with driver pressure both inside and outside the 

tube.  

 For very low length ratios (less than 5), the shock exits the tube before the 

expansion waves overtake the shock front, while for very high length ratios 

(above 25), expansion waves overtake and degrade the shock, potentially to the 

point where it has lost much of its strength by the time it reaches its destination. 

  Once the expansion waves overtake the shock front, peak pressure starts 

decreasing but positive phase duration increases. As a result, if a target is placed 

near the tube, it will experience a relatively high peak pressure over a relatively 

short duration. If the target is placed at a longer distance from the tube, it will 

experience a relatively low peak pressure over a relatively long duration. The 

same positive impulse can be achieved at both locations. The trauma experienced 

in both locations can then be compared to see which combination is more 

injurious. High peak pressure can be achieved with high driver pressure while 

longer positive phase duration can be achieved with shorter driver section lengths.  

 The relationship between the dependent and independent variables in 2D and 3D 

simulations is the same. Three-dimensional simulations quantify the results more 

accurately than 2D simulations.   

 None of three possible boundary condition formulations was accurate in modeling 

conditions at the outlet boundary of the 1D shock tube simulation. Alternatives to 

seeking an appropriate boundary condition for this problem include using a longer 

computational domain and/or stopping the simulation before the shock front 

reaches the end of the domain to avoid contributions from boundary behavior. 
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5.3 Future work 

The work presented in this thesis results mainly from 1D and 2D simulations. 

However, the 3D simulation naturally simulates reality more accurately than the 2D 

approach. At the same time, the 2D simulation runs faster than the 3D simulation and 

demands less computer memory and storage space. Future work could involve combining 

the advantages of both. One solution would be to convert the Cartesian coordinate system 

of the Uintah computational framework into the cylindrical coordinate system and then to 

model the 3D problem as a 2D wedge with axisymmetry about the tube axis. 

As discussed already in Chapter 3, the phenomenon of vortex needs more 

investigation by comparing the static and total energies in the region around the vortex. 

Also, to see its influence on an actual target, an experimental approach should be 

adopted. 

As discussed in Chapter 1, inside the tube, the variation of the positive and 

negative phase duration with the driver pressure is bilinear, so more investigation is 

needed in future to explore this phenomenon.   

The ultimate goal of this research on traumatic brain injury is to study the impact 

of a blast wave on an animal or biological tissue. This thesis is concerned only with 

characterizing the blast tube system. In the future, fluid-structure interaction can be 

implemented to simulate deformation of a target.  

 

 

 

 



 

 

 

 

APPENDIX 

A.1 Study of boundary conditions  

A.1.1  Introduction 

Every 3D computational domain has 6 faces; they are x-, x+, y-, y+, and, z-, z+. 

The 1D problem defined is symmetric about the Y and Z axes. In the Uintah 

computational framework, the application of boundary conditions on each of the six faces 

is required, irrespective of the dimension of the problem. Hence the “symmetry” 

boundary condition was applied on all the y and z faces.  The remaining faces are x- and 

x+.  The x- face is at the left side of the high pressure region, while the x+ face is open to 

the atmosphere.   

There are four main fluid properties that need to be defined on the boundary, 

namely, pressure, temperature, velocity, and density of the gas. These parameters are 

defined on the boundaries using one of the following three boundary conditions: 

Dirichlet, Neumann, and Local One Dimensional Inviscid (LODI).  

 

A.1.1.1       Dirichlet boundary condition  

This boundary condition was named after Johann Peter Gustav Lejeune Dirichlet. 

It specifies the value a solution takes on the boundary. Thus, if Q is any of the fluid 

properties mentioned above, according to the Dirichlet boundary condition, 
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Q=C 

 

where C is a prescribed constant. In other words, it is a “fixed” boundary condition.  

 

A.1.1.2  Neumann boundary condition  

 This boundary condition is named after Carl Neumann. When imposed on any 

boundary, it specifies the value of the derivative of the solution. Thus, if Q is any fluid 

property, then the Neumann boundary condition states that 

 

  

  
   

 

where C is the value of the derivative of Q with respect to x. In other words, it’s a 

gradient boundary condition.   

 

A.1.1.3  Local One-dimensional Inviscid  (LODI) 

 boundary condition [20] 

One-dimensional Navier-Stokes equations near a boundary can be written in 

terms of the amplitudes (Li) of characteristic waves associated with each characteristic 

velocity λi. For values of λi, refer to Equation 9.14 in Poinsot’s book [20]. These 

equations are formed by neglecting transverse, viscous, and reaction terms and are hence 

called one-dimensional inviscid equations. Relations obtained by this method have no 

physical significance but are used to specify the amplitudes of the waves crossing the 

boundary.  

(A.1) 

(A.2) 
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where, u1, u2, u3 are the velocity components in three perpendicular directions and Yk is 

the mass fraction of the k
th

 species. By setting different values to Li in Equations A.3a – 

A.3f, nonreflecting boundary condition can be obtained. For more information, please 

refer to Poinsot’s book [20].  

 

A.1.2 Boundary conditions on the left boundary (x- face) 

As is mentioned above, the computational domain for the 1D shock tube problem 

is bounded by x- and x+ faces. Table A.1 represents the boundary conditions that are 

applied on the x- face. This is a closed inlet boundary problem. This is modeled by 

setting velocity equal to zero on the inlet boundary using the Dirichlet boundary 

condition. For the other fluid properties, the Neumann boundary condition is used.  Due 

to the wall, the gradients of both density and pressure set to zero. The gradient of 

temperature becomes zero due to the inviscid flow assumption.  

(A.3a) 

(A.3b) 

(A.3c) 

(A.3d) 

(A.3e) 

(A.3f) 
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Table A.1: Boundary conditions on the x- face 

Fluid Property BC Value Units 

Pressure Neumann 0 Pa 

Temperature Neumann 0 K 

Velocity Dirichlet 0 m/s 

Density Neumann 0 kg/m
3
 

 

 

A.1.3 Boundary conditions on the outlet boundary (x+ face) 

Boundary conditions for the x+ face were defined as shown in Table A.2. The 

appropriate boundary condition for pressure was not obvious. As a result, all three 

possibilities were investigated further. In the case of the Dirichlet boundary condition, the 

pressure on the x+ face was set to the atmospheric value since the shock tube used for 

this research is open to the atmosphere. The Neumann boundary condition was defined 

with the gradient of pressure across the boundary equal to zero. Table A.3 displays the 

input file parameter settings for the boundary condition simulations.  

 

Table A.2: Boundary conditions on the x+ face 

Fluid Property BC Value Units 

Pressure Neu/Dir/LODI Variable Pa 

Temperature Neumann 0 K 

Velocity Neumann 0 m/s 

Density Neumann 0 kg/m
3 

Table A.3: Input parameter declaration to study boundary conditions 
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Parameters Values Units 

Ldr 0.2  m 

Ldn 0.8  m 

LR 4  - 

Resolution (size of each cell) 1.25 mm 

Physical time of the simulation (t) 0.015 sec 

Order of method First - 

CFL 0.4 - 

 

 

A.1.4  Results of the boundary condition study on the x+ face 

Figure  Figures A.1 and A.2 are the pressure-time plots for all three boundary 

conditions. In the figures, the pressure-time curves for all three boundary conditions are 

identical for a short period of time and then separate. This separation is due to the 

reflected wave from the x+ boundary. Once the wave hits the boundary, it reflects back, 

and the nature of the reflected wave is different for different boundary conditions. Also, 

the profiles seem to separate earlier in Figure A.1 (approximately t = 0.0034 sec) than in 

Figure A.2 (approximately t = 0.0046 sec). This is because for the reflected wave, the 

probe point at 0.7 m is nearer than the probe point at 0.5 m. To study the pressure wave 

characteristics, a pure incident shock that is not affected by the reflected wave is required. 

Hence, the performance of the boundary conditions needs to be evaluated.  
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Figure A.1: P versus t at x = 0.5 m 

 

 

Figure A.2: P versus t at x = 0.7 m 
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Figures A.3 – A.5 show the pressure profile inside the tube at different times. In 

Figure A.3, as the wave strikes the boundary, reflected waves are generated in a 

continuous manner and the pressure wave never settles to the atmospheric boundary 

value. So, the choice of applying the Dirichlet boundary condition on the x+ face was 

rejected. In Figures A.4 and A.5, after the shock wave reaches the boundary, the pressure 

at the boundary decreases with time, as expected. Both cases seem reasonable initially, 

but at later times, due to the Neumann boundary condition, pressure never recovers to the 

atmospheric value, as can be seen in Figures A.1, A.2, and A.4. The LODI boundary 

condition, which is described as the nonreflective boundary condition, seems to be the 

most favorable choice here. Even though it is described as the nonreflective boundary 

condition, a validation of the same is essential by comparing against the 2D results. 

 

 

Figure A.3: P versus x at different times when Dirichlet BC is imposed 
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Figure A.4: P versus x at different times when Neumann BC is imposed 

 

 

Figure A.5: P versus x at different times when LODI BC is imposed 
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A.1.5  Comparison of 1D and 2D pressure profiles 

The only additional geometrical parameter in the 2D shock tube simulation is the 

diameter of the tube, and the pressure profile of the shock wave is not dependent on the 

diametrical dimension of the shock tube (see Equation 1.4). Thus, inside the tube, both 

1D and 2D simulations should properly model the wave behavior. The boundary 

conditions are always applied on the boundaries of the computational domain and the 

boundaries of the 2D computational domain are extended outside the shock tube exit. 

Figure A.6 explains the phenomenon more clearly. As shown, the computational domain 

of the 2D shock tube is far enough from the end of the shock tube that the reflected waves 

do not affect the pressure profile at the selected probe point; that means it reflects the 

phenomena of no boundary condition. Figure A.7 shows the comparison of the previously 

plotted 1D (minus the Dirichlet results) and 2D pressure profiles at x = 0.7 m. From 

Figure A.7, it is clear that the pressure profile is the same for all three cases before the 

wave reaches the boundary. The pressure profiles separate once the shock wave, in the 

1D case, reaches the boundary. After the comparison with the 2D results, it was observed 

that none of the boundary conditions replicate the nonreflecting behavior of the shock 

wave; thus, it was decided to use a longer tube or a shorter duration time to avoid the 

reflections from the boundary.   
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Figure A.7: Comparison of the pressure profiles of 1D and 2D at 0.7 m 
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Figure A.6: Difference between the computational domain of 1D and 2D shock tubes 
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A.2 Additional plots 

A.2.1 Pressure contour in the field outside the tube at Ldr = 6 cm 

In Section 3.8.2, the pressure contours for 4 cm and 8 cm driver section length are 

shown. The initial conditions are listed in Table 3.3 except the in this case, Ldr is 6 cm. 

Figure A.8 shows the contour plot of peak pressure lines at Ldr of 6 cm.  

 

A.2.2 Comparison between peak pressures of 2D and 3D  

In Section 4.2, the comparison between the peak pressures of 2D and 3D at 45⁰ 

line is shown. Figure A.9 shows the comparison between peak pressures of 2D and 3D 

results along the 60⁰ line at all radii. 

 

 

Figure A.8: Contour plot of pressure in the field outside the tube; Ldr = 6 cm 
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Figure A.9: Peak pressure versus radius at 60⁰; 2D versus 3D results 

 

A.2.3 Comparison between the positive phase durations  

of 2D and 3D results along the 60⁰ line 

In Section 4.2, the comparison between the positive phase durations of 2D and 3D 

at 60⁰ line is shown. Figure A.10 shows the comparison between positive phase durations 

of 2D and 3D results along the 60⁰ line at all radii. 
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Figure A.10: Positive phase duration versus radius at 60⁰; 2D versus 3D results 
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A.3 Input files  

 

A.3.1 Input file – 1D shock tube problem 

 

<?xml version="1.0" encoding="UTF-8"?> 

<Uintah_specification> 

  <!--Please use a consistent set of units, (mks, cgs,...)--> 

  <Meta> 

    <title>Advection test</title> 

  </Meta> 

  <SimulationComponent type="ice"/> 

  <!--

____________________________________________________________________--> 

  <!--      T  I  M  E     V  A  R  I  A  B  L  E  S                      

--> 

  <!--

____________________________________________________________________--> 

  <Time> 

    <maxTime>            0.01       </maxTime> 

    <initTime>           0.0         </initTime> 

    <delt_min>           0.0         </delt_min> 

    <delt_max>           1.0         </delt_max> 

    <delt_init>          1.0e-6      </delt_init> 

    <timestep_multiplier>1.0         </timestep_multiplier> 

  </Time> 

  <!--

____________________________________________________________________--> 

  <!--      G  R  I  D     V  A  R  I  A  B  L  E  S                      

--> 

  <!--

____________________________________________________________________--> 

  <Grid> 

    <BoundaryConditions> 

      <LODI> 

        <press_infinity> 1.0132500000010138e+05  </press_infinity> 

        <sigma>          0.27                    </sigma> 

        <ice_material_index> 0                   </ice_material_index> 

      </LODI> 

      <Face side="x-"> 

        <BCType id="0" label="Pressure" var="Neumann"> 

          <value> 0. </value> 

        </BCType> 

        <BCType id="0" label="Velocity" var="Dirichlet"> 

          <value> [0.,0.,0.] </value> 

        </BCType> 

        <BCType id="0" label="Temperature" var="Neumann"> 

          <value> 0. </value> 

        </BCType> 

        <BCType id="0" label="Density" var="Neumann"> 

          <value> 0  </value> 

        </BCType> 

        <BCType id="0" label="SpecificVol" var="computeFromDensity"> 



107 

 

 

 

          <value> 0.0 </value> 

        </BCType> 

      </Face> 

      <Face side="x+"> 

        <BCType id="0" label="Pressure" var="LODI"> 

          <value> 0.0   </value> 

        </BCType> 

        <BCType id="0" label="Velocity" var="Neumann"> 

          <value> [0.,0.,0.] </value> 

        </BCType> 

        <BCType id="0" label="Temperature" var="Neumann"> 

          <value> 0.0  </value> 

        </BCType> 

        <BCType id="0" label="Density" var="Neumann"> 

          <value> 0.0  </value> 

        </BCType> 

        <BCType id="0" label="SpecificVol" var="computeFromDensity"> 

          <value> 0.0 </value> 

        </BCType> 

      </Face> 

      <Face side="y-"> 

        <BCType id="0" label="Symmetric" var="symmetry"> 

          </BCType> 

      </Face> 

      <Face side="y+"> 

        <BCType id="0" label="Symmetric" var="symmetry"> 

          </BCType> 

      </Face> 

      <Face side="z-"> 

        <BCType id="0" label="Symmetric" var="symmetry"> 

          </BCType> 

      </Face> 

      <Face side="z+"> 

        <BCType id="0" label="Symmetric" var="symmetry"> 

          </BCType> 

      </Face> 

    </BoundaryConditions> 

    <Level> 

      <Box label="1"> 

        <lower>        [0,0,0]    </lower> 

        <upper>        [5,1,1]    </upper> 

        <extraCells>   [1,1,1]    </extraCells> 

        <patches>      [80,1,1]    </patches> 

        <resolution>   [4000,1,1]  </resolution> 

      </Box> 

      <periodic>[0, 0, 0]</periodic> 

    </Level> 

  </Grid> 

  <!--_____________________________________________________________--> 

  <!--      O  U  P  U  T     V  A  R  I  A  B  L  E  S            --> 

  <!--_____________________________________________________________--> 

  <DataArchiver> 

    <filebase>shockTube.uda</filebase> 

    <outputInterval>.0002</outputInterval> 

    <save label="press_equil_CC"/> 

    <save label="uvel_FCME"/> 
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    <save label="vvel_FCME"/> 

    <save label="wvel_FCME"/> 

    <save label="delP_Dilatate"/> 

    <save label="press_CC"/> 

    <save label="mom_L_ME_CC"/> 

    <save label="rho_CC"/> 

    <save label="vel_CC"/> 

    <save label="temp_CC"/> 

    <save label="sp_vol_CC"/> 

    <!-- needed for regression tester dat comparisons --> 

    <save label="KineticEnergy"/> 

    <save label="TotalIntEng"/> 

    <checkpoint interval="0.0005" cycle="2"/> 

  </DataArchiver> 

  <!--____________________________________________________________--> 

  <!--    I  C  E     P  A  R  A  M  E  T  E  R  S                --> 

  <!--____________________________________________________________--> 

  <CFD> 

    <cfl>0.25</cfl> 

    <ICE> 

      <advection type="FirstOrder"/> 

    </ICE> 

  </CFD> 

  <!--____________________________________________________________--> 

  <!--     P  H  Y  S  I  C  A  L     C  O  N  S  T  A  N  T  S   --> 

  <!--____________________________________________________________--> 

  <PhysicalConstants> 

    <gravity>            [0,0,0]   </gravity> 

    <reference_pressure> 101325.0  </reference_pressure> 

  </PhysicalConstants> 

  <!--____________________________________________________________--> 

  <!--     Material Properties and Initial Conditions             --> 

  <!--____________________________________________________________--> 

  <MaterialProperties> 

    <ICE> 

      <material name="gas"> 

        <EOS type="ideal_gas">                     </EOS> 

        <dynamic_viscosity>      0.0                 

</dynamic_viscosity> 

        <thermal_conductivity>   0.0                 

</thermal_conductivity> 

        <specific_heat>          717.5               </specific_heat> 

        <gamma>                  1.4                  </gamma> 

        <geom_object> 

          <difference> 

            <box label="wholegrid"> 

              <min>           [0.0, 0.0, 0.0 ]   </min> 

              <max>           [5, 1.5, 1.5 ]   </max> 

            </box> 

            <box label="rightpartition"> 

              <min>           [0.05, 0, 0]   </min> 

              <max>           [5, 1.0, 1.0 ]   </max> 

            </box> 

          </difference> 

          <res>                  [2,2,2]            </res> 

          <velocity>       [0.0,0.0,0.0]           </velocity> 
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          <temperature>    300.0                   </temperature> 

          <density>        11.768292682926831000   </density> 

          <pressure>       1013250.0                </pressure> 

        </geom_object> 

        <geom_object> 

          <box label="rightpartition">            </box> 

          <res>           [2,2,2]                 </res> 

          <velocity>       [0.0,0.0,0.0]           </velocity> 

          <temperature>    300.0                   </temperature> 

          <density>        1.1768292682926831000   </density> 

          <pressure>       101325.0                </pressure> 

        </geom_object> 

      </material> 

    </ICE> 

  </MaterialProperties> 

  <!--___________________________________________________________ --> 

  <DataAnalysis> 

    <Module name="lineExtract"> 

      <material>gas</material> 

      <samplingFrequency> 1e10 </samplingFrequency> 

      <timeStart>          0   </timeStart> 

      <timeStop>          100  </timeStop> 

      <Variables> 

        <analyze label="press_CC"/> 

        <analyze label="rho_CC"/> 

        <analyze label="temp_CC"/> 

        <analyze label="vel_CC"/> 

      </Variables> 

      <lines> 

        <line name="X_line"> 

          <startingPt>  [0.05, 0.0, 0.0]   </startingPt> 

          <endingPt>    [5, 0.0, 0.0]   </endingPt> 

        </line> 

      </lines> 

    </Module> 

  </DataAnalysis> 

</Uintah_specification> 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



110 

 

 

 

A.3.2 Input file – 2D shock tube problem 

 

<?xml version='1.0' encoding='ISO-8859-1' ?> 

<Uintah_specification>  

<!--Please use a consistent set of units, (mks, cgs,...)--> 

 

   <Meta> 

       <title> 2D shockTube </title> 

   </Meta> 

 

   <SimulationComponent type="rmpmice" /> 

   <doAMR>true</doAMR>  

 

 

    <!--____________________________________________________________--> 

    <!--      T  I  M  E     V  A  R  I  A  B  L  E  S              --> 

    <!--____________________________________________________________--> 

   <Time> 

       <maxTime>            0.003        </maxTime> 

       <initTime>           0.0         </initTime> 

       <delt_min>           0.0         </delt_min> 

       <delt_max>           1.0         </delt_max> 

       <delt_init>          1.0e-8      </delt_init> 

     <!-- <max_Timesteps> 12</max_Timesteps>   -->      

        <timestep_multiplier>0.8 </timestep_multiplier> 

   </Time> 

 

    <!--____________________________________________________________--> 

    <!--      G  R  I  D     V  A  R  I  A  B  L  E  S              --> 

    <!--____________________________________________________________--> 

    <Grid> 

    <BoundaryConditions> 

 

      <LODI> 

           <press_infinity> 1.0132500000010138e+05  </press_infinity> 

           <sigma>          0.27                    </sigma> 

           <ice_material_index> 1                   

</ice_material_index> 

      </LODI> 

 

      <Face side = "x-"> 

        <BCType id = "0"   label = "Pressure"    var = "Neumann"> 

                              <value> 0.0   </value> 

        </BCType> 

        <BCType id = "all" label = "Velocity"    var = "Dirichlet"> 

                              <value> [0.0,0.,0.] </value> 

        </BCType> 

        <BCType id = "all" label = "Temperature" var = "Neumann"> 

                              <value> 0.0  </value> 

        </BCType> 

        <BCType id = "all" label = "Density"     var = "Neumann"> 

                              <value> 0.0  </value> 

        </BCType> 
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        <BCType id = "all" label = "SpecificVol" var = 

"computeFromDensity"> 

                              <value> 0.0  </value> 

        </BCType> 

      </Face> 

       

 

      <Face side = "x+"> 

        <BCType id = "0"   label = "Pressure"     var = "Neumann"> 

                              <value> 0.0   </value> 

        </BCType> 

        <BCType id = "all" label = "Velocity"     var = "Neumann"> 

                              <value> [0.,0.,0.] </value> 

        </BCType> 

        <BCType id = "all" label = "Temperature"  var = "Neumann"> 

                              <value> 0.0  </value> 

        </BCType> 

        <BCType id = "all" label = "Density"      var = "Neumann"> 

                              <value> 0.0  </value> 

        </BCType> 

        <BCType id = "all" label = "SpecificVol"  var = 

"computeFromDensity"> 

                              <value> 0.0  </value> 

        </BCType> 

      </Face> 

 

      <Face side = "y-"> 

        <BCType id = "all" label = "Symmetric"    var = "symmetry"> 

        </BCType> 

      </Face> 

      <Face side = "y+"> 

        <BCType id = "0"   label = "Pressure"     var = "Neumann"> 

                              <value> 0.0   </value> 

        </BCType> 

        <BCType id = "all" label = "Velocity"     var = "Neumann"> 

                              <value> [0.,0.,0.] </value> 

        </BCType> 

        <BCType id = "all" label = "Temperature"  var = "Neumann"> 

                              <value> 0.0  </value> 

        </BCType> 

        <BCType id = "all" label = "Density"      var = "Neumann"> 

                              <value> 0.0  </value> 

        </BCType> 

        <BCType id = "all" label = "SpecificVol"  var = 

"computeFromDensity"> 

                              <value> 0.0  </value> 

        </BCType> 

      </Face> 

       

      <Face side = "z-"> 

        <BCType id = "all" label = "Symmetric" var = "symmetry"> 

        </BCType> 

      </Face>                   

 

      <Face side = "z+"> 

        <BCType id = "all" label = "Symmetric" var = "symmetry"> 
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        </BCType> 

      </Face> 

    </BoundaryConditions> 

       <Level> 

           <Box label = "1"> 

              <lower>        [-1.37445, 0.0, -0.005]    </lower> 

              <upper>        [0.62555, 0.4, 0.005]    </upper> 

              <extraCells>   [1,1,1]                  </extraCells> 

              <patches>      [10,1,1]                  </patches> 

           </Box> 

           <spacing>         [0.02,0.02,0.01]      </spacing> 

       </Level> 

    </Grid> 

 

    <!--____________________________________________________________--> 

    <!--   O  U  P  U  T     V  A  R  I  A  B  L  E  S              --> 

    <!--____________________________________________________________--> 

   <DataArchiver> 

      <filebase>MouseBrains.uda</filebase> 

      <outputInterval>2e-5</outputInterval> 

      <outputInitTimestep/> 

      <save label = "press_CC"/> 

 <!--     <save label = "vol_frac_CC"/>  --> 

      <save label = "sp_vol_CC"/> 

      <save label = "vel_CC"/> 

      <save label = "rho_CC"/> 

      <save label = "temp_CC"/> 

      <save label = "mach"/> 

      <save label = "mom_L_ME_CC"/> 

      <save label = "KineticEnergy"/> 

      <save label = "TotalIntEng"/> 

      <save label = "mag_grad_press_CC"/> 

        

      <save label = "p.x"      levels="-1"/> 

      <save label = "p.volume" levels="-1"/> 

     

      <checkpoint walltimeStart = "600" walltimeInterval = "1200" cycle 

= "2"/> 

      

   </DataArchiver> 

 

    <!--____________________________________________________________--> 

    <!--    I  C  E     P  A  R  A  M  E  T  E  R  S                --> 

    <!--____________________________________________________________--> 

    <CFD> 

       <cfl>0.4</cfl> 

       <ICE> 

         <advection type = "SecondOrder"/> 

       </ICE>         

    </CFD> 

    <MPM> 

        <time_integrator>explicit</time_integrator> 

    </MPM> 

    <!--____________________________________________________________--> 

    <!--    A M R   G R I D                                         --> 

    <!--____________________________________________________________--> 
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    <AMR> 

      <ICE> 

        <do_Refluxing>        false    </do_Refluxing> 

        <orderOfInterpolation>1        </orderOfInterpolation> 

        <ClampSpecificVolume> true      </ClampSpecificVolume> 

         

        <Refinement_Criteria_Thresholds> 

          <Variable name = "press_CC" value = "1e6" matl = "0" /> 

        </Refinement_Criteria_Thresholds> 

        <orderOf_CFI_Interpolation>1</orderOf_CFI_Interpolation> 

      </ICE> 

      <MPM> 

        <min_grid_level>-1</min_grid_level> 

        <max_grid_level>-1</max_grid_level> 

      </MPM> 

 

      <Regridder type="Tiled"> 

        <adaptive>                 true      </adaptive> 

        <min_patch_size>           [[8,8,1]]  </min_patch_size> 

        <max_levels>                  3       </max_levels> 

        <cell_refinement_ratio>    [[4,4,1]]  </cell_refinement_ratio> 

        <cell_stability_dilation>   [2,2,0]   

</cell_stability_dilation> 

        <cell_regrid_dilation>      [1,1,0]   </cell_regrid_dilation> 

        <max_timestep_interval>    100         </max_timestep_interval> 

        <min_boundary_cells>        [1,1,0]   </min_boundary_cells> 

      </Regridder> 

 

      <useLockStep>       true    </useLockStep> 

    </AMR>  

     

    <LoadBalancer type="DLB"> 

      <dynamicAlgorithm> patchFactorParticles</dynamicAlgorithm> 

      <doSpaceCurve>         true            </doSpaceCurve> 

      <timestepInterval>     100             </timestepInterval> 

    </LoadBalancer>    

    

    <!--____________________________________________________________--> 

    <!--     P  H  Y  S  I  C  A  L     C  O  N  S  T  A  N  T  S   --> 

    <!--____________________________________________________________-->    

    <PhysicalConstants> 

       <gravity>            [0,0,0]   </gravity> 

       <reference_pressure> 101325.0  </reference_pressure> 

    </PhysicalConstants> 

 

    <!--____________________________________________________________--> 

    <!--    MATERIAL PROPERTIES INITIAL CONDITIONS                  --> 

    <!--____________________________________________________________--> 

    <MaterialProperties> 

       <MPM> 

         <material> 

            <density>             8900.0           </density> 

            <constitutive_model type = "comp_neo_hook_plastic"> 

                <useModifiedEOS>     true          </useModifiedEOS> 
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                <bulk_modulus>      117.0e7        </bulk_modulus> 

                <shear_modulus>      43.8e7        </shear_modulus> 

                <yield_stress>       70.0e6        </yield_stress> 

                <hardening_modulus>  43.8e5        </hardening_modulus> 

                <alpha>               0.0          </alpha> 

                <strain_limit>       3.05          </strain_limit> 

                <reduction_factor>   1.0           </reduction_factor> 

            </constitutive_model> 

              <thermal_conductivity>  400.0         

</thermal_conductivity> 

              <specific_heat>         386.0         </specific_heat> 

            <geom_object> 

                  <box label = "shockTubeWall">                          

                      <min>      [-1.37445, 0.0126, -0.1] </min>        

                      <max>      [0.0,  0.02, 0.1] </max>        

                  </box>                                                 

                  <res>              [2,2,1]        </res>               

                  <velocity>         [0.,0.,0.]     </velocity>          

                  <temperature>      300.           </temperature>       

            </geom_object> 

         </material> 

         <contact> 

           <type>null</type> 

           <materials>              [0]         </materials> 

         </contact> 

      </MPM> 

       <ICE> 

         <material name ="Nitrogen"> 

           <EOS type = "ideal_gas">                     </EOS> 

   <dynamic_viscosity>          0.0             </dynamic_viscosity> 

   <thermal_conductivity>       0.0             </thermal_conductivity> 

   <specific_heat>              743.0           </specific_heat> 

           <gamma>                      1.4             </gamma>   

           <geom_object> 

               <box label = "HighPressureRegion"> 

                   <min>           [-1.37445, 0.0, -0.1]  </min> 

                   <max>           [-1.31445, 0.0126, 0.1]    </max> 

               </box> 

               <res>                [2,2,1]             </res> 

               <velocity>           [0.0,0.0,0.0]       </velocity> 

               <temperature>        300.0               </temperature> 

               <density>            54.13111378             </density> 

               <pressure>           4826330.105217853            

</pressure> 

           </geom_object> 

                   

           <geom_object> 

              <difference> 

                <box label = "ComputationalDomain"> 

                    <min>           [-2,-1.0,-0.1]    </min> 

                    <max>           [1.5, 1.0, 0.1]    </max> 

                </box> 

                <union> 

                  <box label = "shockTubeWall"/> 

                  <box label = "HighPressureRegion"/> 

                </union> 
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              </difference> 

               <res>                [2,2,1]             </res> 

               <velocity>           [0.0,0.0,0.0]       </velocity> 

               <temperature>        300.0               </temperature> 

               <density>    1.1792946927374306000e+00   </density> 

               <pressure>           101325.0            </pressure> 

           </geom_object> 

         </material> 

      </ICE>        

        

      <exchange_properties>  

         <exchange_coefficients> 

              <momentum>               [1e15]         </momentum> 

              <heat>                   [1e15]         </heat> 

        </exchange_coefficients> 

     </exchange_properties>  

    </MaterialProperties> 

    <!--____________________________________________________________--> 

    <DataAnalysis> 

       <Module name="lineExtract"> 

        

        <material>Nitrogen</material> 

        <samplingFrequency> 1e8 </samplingFrequency> 

        <timeStart>          1e-7   </timeStart> 

        <timeStop>          100  </timeStop> 

        

        <Variables> 

          <analyze label="press_CC" matl="0"/> 

          <analyze label="rho_CC" matl="1"/>  

          <analyze label="temp_CC" matl="1"/> 

          <analyze label="vel_CC" matl="1"/> 

          <analyze label="mach" matl="1"/> 

        </Variables> 

         

        <lines> 

         

    <!--        sensor locations                  --> 

   

           <line name="S1">  

                <startingPt>  [-0.093335, 0.0, 0]   </startingPt> 

                <endingPt>    [-0.092096, 0.0, 0]   </endingPt>  

          </line> 

    

    <!--        sample point outside the tube at 4 cm 60 deg      --> 
 

           <line name="P602@r_4_the_60">  

                <startingPt>  [0.02, 0.03464, 0]   </startingPt> 

                <endingPt>    [0.02127, 0.03464, 0]   </endingPt> 

         </line> 

 

        </lines> 

      </Module> 

    </DataAnalysis>        

 

</Uintah_specification> 
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A.3.3 Input file – 3D shock tube problem 

 

<?xml version='1.0' encoding='ISO-8859-1' ?> 

<Uintah_specification>  

<!--Please use a consistent set of units, (mks, cgs,...)--> 

 

   <Meta> 

       <title> 2D shockTube </title> 

   </Meta> 

 

   <SimulationComponent type="rmpmice" /> 

   <doAMR>true</doAMR>  

 

    <!--____________________________________________________________--> 

    <!--      T  I  M  E     V  A  R  I  A  B  L  E  S              --> 

    <!--____________________________________________________________--> 

   <Time> 

       <maxTime>            0.003        </maxTime> 

       <initTime>           0.0         </initTime> 

       <delt_min>           0.0         </delt_min> 

       <delt_max>           1.0         </delt_max> 

       <delt_init>          1.0e-8      </delt_init> 

       <timestep_multiplier>0.8 </timestep_multiplier> 

   </Time> 

 

    <!--____________________________________________________________--> 

    <!--      G  R  I  D     V  A  R  I  A  B  L  E  S              --> 

    <!--____________________________________________________________--> 

    <Grid> 

    <BoundaryConditions> 

      <LODI> 

           <press_infinity> 1.0132500000010138e+05  </press_infinity> 

           <sigma>          0.27                    </sigma> 

           <ice_material_index> 1                 </ice_material_index> 

      </LODI> 

 

      <Face side = "x-"> 

        <BCType id = "0"   label = "Pressure"    var = "Neumann"> 

                              <value> 0.0   </value> 

        </BCType> 

        <BCType id = "all" label = "Velocity"    var = "Dirichlet"> 

                              <value> [0.0,0.,0.] </value> 

        </BCType> 

        <BCType id = "all" label = "Temperature" var = "Neumann"> 

                              <value> 0.0  </value> 

        </BCType> 

        <BCType id = "all" label = "Density"     var = "Neumann"> 

                              <value> 0.0  </value> 

        </BCType> 

        <BCType id = "all" label = "SpecificVol" var = 

"computeFromDensity"> 

                              <value> 0.0  </value> 

        </BCType> 
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      </Face> 

       

 

      <Face side = "x+"> 

        <BCType id = "0"   label = "Pressure"     var = "Neumann"> 

                              <value> 0.0   </value> 

        </BCType> 

        <BCType id = "all" label = "Velocity"     var = "Neumann"> 

                              <value> [0.,0.,0.] </value> 

        </BCType> 

        <BCType id = "all" label = "Temperature"  var = "Neumann"> 

                              <value> 0.0  </value> 

        </BCType> 

        <BCType id = "all" label = "Density"      var = "Neumann"> 

                              <value> 0.0  </value> 

        </BCType> 

        <BCType id = "all" label = "SpecificVol"  var = 

"computeFromDensity"> 

                              <value> 0.0  </value> 

        </BCType> 

      </Face> 

 

      <Face side = "y-"> 

        <BCType id = "all" label = "Symmetric"    var = "symmetry"> 

        </BCType> 

      </Face> 

      <Face side = "y+"> 

        <BCType id = "0"   label = "Pressure"     var = "Neumann"> 

                              <value> 0.0   </value> 

        </BCType> 

        <BCType id = "all" label = "Velocity"     var = "Neumann"> 

                              <value> [0.,0.,0.] </value> 

        </BCType> 

        <BCType id = "all" label = "Temperature"  var = "Neumann"> 

                              <value> 0.0  </value> 

        </BCType> 

        <BCType id = "all" label = "Density"      var = "Neumann"> 

                              <value> 0.0  </value> 

        </BCType> 

        <BCType id = "all" label = "SpecificVol"  var = 

"computeFromDensity"> 

                              <value> 0.0  </value> 

        </BCType> 

      </Face> 

       

      <Face side = "z-"> 

        <BCType id = "all" label = "Symmetric" var = "symmetry"> 

        </BCType> 

      </Face>                   

 

      <Face side = "z+"> 

        <BCType id = "all" label = "Symmetric" var = "symmetry"> 

        </BCType> 

      </Face> 

    </BoundaryConditions> 

       <Level> 
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           <Box label = "1"> 

              <lower>        [-1.37445, 0.0, 0.0]   </lower> 

              <upper>        [0.62555, 0.4, 0.4]    </upper> 

              <extraCells>   [1,1,1]                </extraCells> 

              <patches>      [10,1,1]               </patches> 

          </Box> 

           <spacing>         [0.02,0.02,0.02]      </spacing> 

       </Level> 

    </Grid> 

 

    <!--____________________________________________________________--> 

    <!--   O  U  P  U  T     V  A  R  I  A  B  L  E  S              --> 

    <!--____________________________________________________________--> 

   <DataArchiver> 

      <filebase>MouseBrains.uda</filebase> 

      <outputInterval>2e-5</outputInterval> 

      <outputInitTimestep/> 

      <save label = "press_CC"/> 

      <save label = "sp_vol_CC"/> 

      <save label = "vel_CC"/> 

      <save label = "rho_CC"/> 

      <save label = "temp_CC"/> 

      <save label = "mach"/> 

      <save label = "mom_L_ME_CC"/> 

      <save label = "KineticEnergy"/> 

      <save label = "TotalIntEng"/> 

      <save label = "mag_grad_press_CC"/> 

      <save label = "p.x"      levels="-1"/> 

      <save label = "p.volume" levels="-1"/> 

     

      <checkpoint walltimeStart = "600" walltimeInterval = "1200" cycle 

= "2"/> 

  </DataArchiver> 

 

    <!--____________________________________________________________--> 

    <!--    I  C  E     P  A  R  A  M  E  T  E  R  S                --> 

    <!--____________________________________________________________--> 

    <CFD> 

       <cfl>0.4</cfl> 

       <ICE> 

         <advection type = "SecondOrder"/> 

       </ICE>         

    </CFD> 

    <MPM> 

        <time_integrator>explicit</time_integrator> 

    </MPM> 

    <!--____________________________________________________________--> 

    <!--    A M R   G R I D                                         --> 

    <!--____________________________________________________________--> 

  <AMR> 

    <ICE> 

      <do_Refluxing>        false    </do_Refluxing> 

      <orderOfInterpolation>1        </orderOfInterpolation> 

      <ClampSpecificVolume> true      </ClampSpecificVolume> 

      <Refinement_Criteria_Thresholds> 

        <Variable name="press_CC" value="1e6" matl="0"/> 
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      </Refinement_Criteria_Thresholds> 

      <orderOf_CFI_Interpolation>1</orderOf_CFI_Interpolation> 

    </ICE> 

    <MPM> 

      <min_grid_level>-1</min_grid_level> 

      <max_grid_level>-1</max_grid_level> 

    </MPM> 

    <Regridder type="Tiled"> 

      <adaptive>                 true      </adaptive> 

      <min_patch_size>           [[8,8,8]]  </min_patch_size> 

      <max_levels>                  3       </max_levels> 

      <cell_refinement_ratio>    [[4,4,4]]  </cell_refinement_ratio> 

      <cell_stability_dilation>   [2,2,2]   </cell_stability_dilation> 

      <cell_regrid_dilation>      [1,1,2]   </cell_regrid_dilation> 

      <max_timestep_interval>    100         </max_timestep_interval> 

      <min_boundary_cells>        [1,1,1]   </min_boundary_cells> 

      <dynamic_size>true</dynamic_size> 

    </Regridder> 

    <useLockStep>       true    </useLockStep> 

  </AMR> 

  <LoadBalancer type="DLB"> 

    <dynamicAlgorithm> patchFactorParticles</dynamicAlgorithm> 

    <doSpaceCurve>         true            </doSpaceCurve> 

    <timestepInterval>     100             </timestepInterval> 

    <outputNthProc>1</outputNthProc> 

    <cellCost>1</cellCost> 

    <particleCost>1.25</particleCost> 

    <patchCost>16</patchCost> 

    <gainThreshold>0.050000000000000003</gainThreshold> 

    <profileTimestepWindow>10</profileTimestepWindow> 

    <doCostProfiling>true</doCostProfiling> 

    <levelIndependent>true</levelIndependent> 

    <collectParticles>false</collectParticles> 

  </LoadBalancer> 

    

    <!--____________________________________________________________--> 

    <!--     P  H  Y  S  I  C  A  L     C  O  N  S  T  A  N  T  S   --> 

    <!--____________________________________________________________-->    

    <PhysicalConstants> 

       <gravity>            [0,0,0]   </gravity> 

       <reference_pressure> 101325.0  </reference_pressure> 

    </PhysicalConstants> 

 

    <!--____________________________________________________________--> 

    <!--    MATERIAL PROPERTIES INITIAL CONDITIONS                  --> 

    <!--____________________________________________________________--> 

    <MaterialProperties> 

    <MPM> 

      <material> 

        <density>             8900.0           </density> 

        <constitutive_model type="comp_neo_hook_plastic"> 

          <useModifiedEOS>     true          </useModifiedEOS> 

          <bulk_modulus>      117.0e7        </bulk_modulus> 

          <shear_modulus>      43.8e7        </shear_modulus> 

          <yield_stress>       70.0e6        </yield_stress> 

          <hardening_modulus>  43.8e5        </hardening_modulus> 
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          <alpha>               0.0          </alpha> 

          <strain_limit>       3.05          </strain_limit> 

          <reduction_factor>   1.0           </reduction_factor> 

        </constitutive_model> 

        <thermal_conductivity>  400.0         </thermal_conductivity> 

        <specific_heat>         386.0         </specific_heat> 

        <geom_object> 

          <difference> 

            <cylinder label="outer cylinder"> 

              <bottom>           [-1.37445, 0.0, 0.0]   </bottom> 

              <top>              [0.0, 0.0, 0.0]   </top> 

              <radius>           0.02            </radius> 

            </cylinder> 

            <cylinder label="inner cylinder"> 

              <bottom>           [-1.37445, 0.0, 0.0]    </bottom> 

              <top>              [0.0, 0.0, 0.0]   </top> 

              <radius>           0.0126            </radius> 

            </cylinder> 

          </difference> 

          <res>              [2,2,1]        </res> 

          <velocity>         [0.,0.,0.]     </velocity> 

          <temperature>      300.           </temperature> 

        </geom_object> 

      </material> 

      <contact> 

        <type>null</type> 

        <materials>              [0]         </materials> 

      </contact> 

    </MPM> 

    <ICE> 

      <material name="Nitrogen"> 

        <EOS type="ideal_gas">                     </EOS> 

   <dynamic_viscosity>          0.0             </dynamic_viscosity> 

   <thermal_conductivity>       0.0             </thermal_conductivity> 

   <specific_heat>              743.0           </specific_heat> 

   <gamma>                      1.4             </gamma> 

        <geom_object> 

          <cylinder label="HighPressureRegion"> 

            <bottom>           [-1.37445,0.0,0.0]    </bottom> 

            <top>              [-1.31445, 0.0, 0.0]     </top> 

            <radius>           0.0126               </radius> 

          </cylinder> 

          <res>                [2,2,1]             </res> 

          <velocity>           [0.0,0.0,0.0]       </velocity> 

          <temperature>        300.0               </temperature> 

          <density>            54.13111378         </density> 

          <pressure>           4826330.105217853   </pressure> 

        </geom_object> 

        <geom_object> 

          <difference> 

            <box label="Computationaldomain"> 

              <min>           [-2, -1.0, -1.0]  </min> 

              <max>           [1, 1.0, 1.0]    </max> 

            </box> 

            <union> 

              <difference> 
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                <cylinder label="outer cylinder"/> 

                <cylinder label="inner cylinder"/> 

              </difference> 

              <cylinder label="HighPressureRegion"/> 

            </union> 

          </difference> 

          <res>                [2,2,1]             </res> 

          <velocity>           [0.0,0.0,0.0]       </velocity> 

          <temperature>        300.0               </temperature> 

          <density>    1.1792946927374306000e+00   </density> 

          <pressure>           101325.0            </pressure> 

        </geom_object> 

      </material> 

    </ICE> 

    <exchange_properties> 

      <exchange_coefficients> 

        <momentum>               [1e15]         </momentum> 

        <heat>                   [1e15]         </heat> 

      </exchange_coefficients> 

    </exchange_properties> 

  </MaterialProperties> 

<!--____________________________________________________________--> 

    <DataAnalysis> 

       <Module name="lineExtract"> 

        <material>Nitrogen</material> 

        <samplingFrequency> 1e8 </samplingFrequency> 

        <timeStart>          1e-7   </timeStart> 

        <timeStop>          100  </timeStop> 

       

        <Variables> 

          <analyze label="press_CC" matl="0"/> 

          <analyze label="rho_CC" matl="1"/>  

          <analyze label="temp_CC" matl="1"/> 

          <analyze label="vel_CC" matl="1"/> 

          <analyze label="mach" matl="1"/> 

        </Variables> 

         

        <lines> 

   <!--        sensor locations                  --> 

   

           <line name="S1">  

                <startingPt>  [-0.093335, 0.0, 0]   </startingPt> 

                <endingPt>    [-0.092096, 0.0, 0]   </endingPt>  

          </line> 

    

    <!--        sample point outside the tube at 4 cm 60 deg      --> 
 

           <line name="P602@r_4_the_60">  

                <startingPt>  [0.02, 0.03464, 0]   </startingPt> 

                <endingPt>    [0.02127, 0.03464, 0]   </endingPt> 

         </line> 

        </lines> 

      </Module> 

    </DataAnalysis>        

 

</Uintah_specification> 
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A.3.4 Data processing 

Once the simulation is run, the data is saved in the form of matrix inside the text 

files. These text files are huge in numbers. Hence, the C-shell and Octave scripts were 

written to extract the useful data from large number of files. C-shell script loops over 

each and every directory and selects the required file specified by different conditions in 

the script, while Octave script performs operation on the selected file to calculate peak 

pressure, positive phase duration, and negative phase duration. 

 

A.3.4.1 C-shell script 

#!/bin/csh 

 

# find all files named "*_k0 in L-2 directory" 

set these = `find . -name  "*_FO"` 

 

#echo $these 

 

/bin/rm -f mf1.dat 

 

echo "  x(m)       Pmax (KPa)     tpmax(sec)   tpos(sec)    tneg(sec)   

Ldr" > mf1.dat 

 

#(deg)           (cm)         (KPa)            (KPa)             (Sec)       

(Sec)        (Sec)         (Sec) 

 

foreach X ( $these[*]:q ) 

 

  # echo "now post processing $X "  

  # remove the first line in the file and save it as a tmp 

  sed /"press_CC"/d <$X >tmp 

   

  # octave script 

  /home/mukul/Octave_codes/tpos_1d tmp >> mf1.dat 

   

  # remove the temporary file tmp 

  /bin/rm tmp  

 

end 

 

sort -n mf1.dat > mf.dat 

rm -rf mf1.dat 

exit 
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A.3.4.2 Octave script 

 

#!/usr/bin/octave -qf 

 

clear all; 

close all; 

file = argv (); 

file_1=sprintf('%s',file); 

f=load(file_1); 

 

for i=1:length(f) 

     if (f(i,5)>1.01325E+05) 

     break 

     end 

end 

    R1 = i; 

    t1 = f(i,4); 

     

for i=R1:length(f) 

     if (f(i,5)<1.013250E+05) 

     break 

     end 

end 

     R2 = i; 

     t2 = f(i,4); 

     

for i=R2:length(f) 

    if (f(i,5)>1.01325E+05) 

      break 

      end 

end 

       

       R3 = i; 

       t3 = f(i,4); 

       tpos = (t2-t1); 

       tneg = (t3-t2); 

       Pmax = max(f(:,5)); 

      Pmin = min(f(:,5)); 

             

k1=find(f(:,5)=Pmax);  

k2=find(f(:,5)=Pmin);                 

h1=f(k1,1:5); 

h2=f(k2,1:5); 

x=h1(:,1); 

y=h1(:,2); 

tPmax=h1(:,4);  

%r=100*sqrt(x^2+y^2);            

%theta=atan(y/x)*180/pi;                

%Pr=Pmax*0.000145038/14.75                 

 

ar=[x Pmax/1000 tPmax tpos tneg]; 

printf ("%02f     ",ar); 

printf ("\n"); 
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