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ABSTRACT 
 
 

Traumatic brain injury (TBI) affects an estimated 1.7 million people annually in 

the United States, 52,000 of whom die as a result of TBI. TBI causes blood vessel 

dysfunction, and even in cases where hemorrhage is not present, TBI has been linked to 

long-term effects such as stroke.  While vascular dysfunction is understood as a 

common outcome of TBI, the physiological and biochemical causes of dysfunction are 

not well understood. Better understanding of the nature of morphological damage to 

blood vessels will provide guidance in the development of therapies to treat TBI. 

This study investigates the effectiveness of collagen mimetic peptide (CMP) as a 

marker for mechanical damage to cerebral blood vessels exposed to various levels of 

axial overstretch. Eleven middle cerebral artery (MCA) segments from three lambs were 

exposed to four levels of axial overstretch. Seventeen sets of confocal images were 

recorded, with at least one set of images from each vessel. These images were analyzed 

for four different metrics in an attempt to quantify the difference between control and 

damaged samples. 

Examination of the images showed a number of bright streaks in the adventitia 

of the damaged samples. It is postulated that these streaks correspond to fibrous, 

axially oriented collagen structures in the adventitia of the blood vessels. Quantification 

of the percent of each image above a threshold value showed a significant difference 



 

iv 

between control samples, and those pulled to failure (p = .0032). This metric was shown 

to generally increase with increasing local stretch levels. This study shows that CMP is an 

effective marker for collagen damage due to axial overstretch.
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CHAPTER 1 
 
 

INTRODUCTION 
 

Traumatic Brain Injury as a Source  

of Blood Vessel Damage 

Traumatic brain injury (TBI) affects an estimated 1.7 million people annually in 

the United States, 52,000 of whom die as a result of TBI (Faul et al., 2010). TBI is 

contributing factor in nearly one third of all injury-related deaths in the United States 

(Faul et al., 2010). Impairment of the cerebral vasculature is a common outcome of TBI, 

and even in cases where cerebral hemorrhage is not present, TBI has been found to 

correlate with an increased risk of stroke up to 5 years after the initial injury (Burke et 

al., 2013; Chen et al., 2011). 

Impairment of cerebral vasculature due to TBI has been found to include 

functional and morphological injury to the cerebral vasculature, leading to decreased 

blood flow, and disruption of the blood brain barrier (BBB) (DeWitt and Prough, 2003). 

DeWitt and Prough review a number of studies, in both humans and animals, regarding 

the response of the cerebral vasculature to TBI (DeWitt and Prough, 2003).  

Under normal conditions, the cerebral vasculature is capable of reacting to 

changes in systemic physiology, such as changes in blood pressure, in order to minimize 

the effects on cerebral blood flow (CBF). Cerebral arteries are also capable of significant 
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dilation and constriction in response to a number of chemical cues, allowing blood flow 

responses to a variety of conditions (DeWitt and Prough, 2003). 

Following TBI, however, these protective functions are often impaired, 

contributing to reduced CBF, a significant factor in mortality and morbidity following TBI 

(Bouma et al., 1991; Bouma et al., 1992b; DeWitt and Prough, 2003; Kelly et al., 1997). 

In severe clinical cases, reductions in CBF following TBI could become as low as a third of 

normal (Bouma et al., 1992b), likely resulting in local reductions sufficient to cause 

neuronal injury in some brain regions (DeWitt and Prough, 2003).  

In addition to reduced resting CBF, it has been shown that TBI in humans often 

results in impairment to the response of cerebral arteries to changes in blood pressure 

(Bouma and Muizelaar, 1990; Bouma et al., 1992a; Bruce et al., 1973; DeWitt and 

Prough, 2003; Jünger et al., 1997; Lam et al., 1997; Muizelaar et al., 1984; Munar et al., 

2000), as well as reductions in blood CO2 levels (DeWitt and Prough, 2003; Enevoldsen 

and Jensen, 1978; Fieschi et al., 1972; Obrist et al., 1984; Overgaard and Tweed, 1974; 

Suazo et al., 2000). Animal studies have shown impaired responses to changes in blood 

pressure (DeWitt and Prough, 2003; DeWitt et al., 1992; Engelborghs et al., 2000; Lewelt 

et al., 1980; Nawashiro et al., 1995; Prat et al., 1997), changes in blood CO2 (DeWitt and 

Prough, 2003; Ellis et al., 1991; Lewelt et al., 1982; Wei et al., 1980), hypoxia (DeWitt 

and Prough, 2003; Lewelt et al., 1982), and hemodilution (DeWitt and Prough, 2003; 

DeWitt et al., 1996; DeWitt et al., 1997). While many of these impairments appear to 

heal within days of injury (DeWitt and Prough, 2003), TBI has been correlated with long-

term risks of vessel dysfunction, such as stroke (Burke et al., 2013; Chen et al., 2011). 
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In addition to vessel dysfunction, DeWitt mentions morphological injury and BBB 

disruption. A variety of animal models showed an opening of the BBB, which began 

within minutes, and persisted for hours (Baskaya et al., 1997; DeWitt and Prough, 2003; 

Fukuda et al., 1995; Povlishock et al., 1978; Schmidt and Grady, 1993; Tanno et al., 

1992; Whalen et al., 1999). A number of studies (Povlishock and Kontos, 1985; Vaz et al., 

1998; Wei et al., 1980), as well as DeWitt’s review (DeWitt and Prough, 2003) and a 

more recent review by Chodobski (Chodobski et al., 2011), implicate morphological 

injury in the form of damage to the endothelial lining in association with BBB disruption. 

In addition to these smaller scale disruptions of BBB, hemorrhage is a common outcome 

of TBI. 

While it is understood that the previously described forms of vascular 

dysfunction are a common outcome of TBI, the causes of dysfunction are not clear. 

Impairment of vascodilatory and vascoconstrictory responses may be caused by trauma-

induced morphological damage to the extracellular matrix (ECM), by changes in the 

biochemical environment due to injury, or by a combination of the two. Determination 

of the cause of impairment will provide much needed guidance in development of 

improved therapies to reduce the effects of TBI. This research investigates direct trauma 

of cerebral blood vessels, with a focus on damage to the ECM of the vessel wall. 

Blood Vessel Microstructure 

While the brain makes up only about 2% of the body weight in humans, it 

receives 15-20% of total cardiac output (Cipolla, 2010). Because of the brain’s unique 

function and structure, it requires not only a high portion of total blood flow, but a fairly 
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constant blood flow (Cipolla, 2010). The ability of the blood vessels in the brain to dilate 

and contract in order to maintain blood flow, including the ability of cerebral blood 

vessels to react to chemical cues as well as changes in blood pressure, has been 

discussed in the previous section. In order to better understand the nature of damage 

caused by trauma, it is necessary to understand the physical structure of the cerebral 

blood vessels. 

Cerebral arteries are composed of three concentric layers; from interior to 

exterior they are: the tunica intima, tunica media, and the tunica adventitia (an 

overview of this structure is shown in Figure 1). The intima is composed of a single layer 

of endothelial cells, and an internal elastic lamina (IEL). The media is primarily composed 

of smooth muscle cells, with some elastin and collagen fibers.  The adventitia is mostly 

composed of collagen fibers and fibroblasts, with associated cells for interacting with 

the surrounding tissue. In contrast to systemic arteries, cerebral arteries lack an external 

elastic lamina (Cipolla, 2010). 

Collagen and elastin fibers compose the majority of the ECM of the cerebral 

arteries, which carries the majority of mechanical loading (Eble and Niland, 2009). 

Collagen fibers in the media have been shown to have a nearly circumferential 

orientation. The adventitial collagen fibers are more axially oriented, with orientation 

shifting towards more circumferential with higher levels of transmural pressure (Finlay 

et al., 1998; Wicker et al., 2008). These orientation changes with loading and wall depth 

are demonstrated in Figure 2. It has also been observed that collagen fibers in the 

adventitia are generally larger in diameter than those in the media (Wicker et al., 2008).  
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Figure 1. Layers of a blood vessel wall, modified from Holzapfel (Holzapfel et al., 2000). 
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Figure 2. Demonstrative images of fiber orientation change with loading. Images are 
second harmonic generation (SHG) optical slices from a basilar artery held at 15% 
extension. Images are oriented so that the horizontal direction is the axial direction of 
the artery. Note the change in direction of the fibers through the thickness. (Wicker et 
al., 2008) used with permission. 

 

 

It can be generally expected that any loading in the axial direction of the blood vessel 

will primarily be carried by the axially oriented collagen in the adventitia. 

Previous Attempts to Image Blood  

Vessel Structure and Damage 

Previous work in quantifying the interaction between damage and ECM 

materials (i.e., collagen and elastin) has been primarily dominated by histology 

methods, both in blood vessels (Austin et al., 2010; Jamal et al., 1992; Ohkawa et al., 

1996), and in other tissues (Dodds et al., 2004; Sacks and Schoen, 2002). Electron 

microscopy has also been previously used to investigate damage in blood vessels (Chan 

et al., 1995; Jamal et al., 1992; Yamamoto et al., 1992). Histological and electron 
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microscopy methods present the problem, however, of requiring extensive sample 

preparation. More general investigations of ECM in nonvascular structure have included 

small angle light scattering (Sacks and Schoen, 2002; Sellaro et al., 2007), and 

quantifying polarized light microscopy (Quinn et al., 2007; Quinn and Winkelstein, 

2008). While these methods offer insight into changes in fiber orientation, however, 

they do not present a complete look at the fiber arrangement through the entire depth 

of a tissue sample. 

A number of recent works in quantifying the structure of vascular ECM have 

focused on confocal (Arribas et al., 2007; Rezakhaniha et al., 2012) and multiphoton 

microscopy (MPM), or nonlinear optical microscopy (NLOM) (Timmins et al., 2010; Wan 

et al., 2012; Wan et al., 2010; Wicker et al., 2008), because of the ability to image the 

vessel wall at multiple depths, either in an intact state, with some loading (Arribas et al., 

2007; Timmins et al., 2010; Wan et al., 2012; Wan et al., 2010; Wicker et al., 2008), or 

cut open and laid flat on a slide (Rezakhaniha et al., 2012). The confocal and MPM 

methods present an advantage over the histological and polarized light methods used 

by Finlay (Finlay et al., 1995), in that they present essentially the same type of images 

obtained by use of tangential sectioning, but without the need to cut the vessel and 

mount multiple samples.   

While the confocal and MPM imaging methods have proven useful in quantifying 

structural changes due to loading, use of these methods alone in an attempt to identify 

damage after injury could prove prohibitively difficult, requiring extensive imaging at 

high magnification to find damaged fibers. Recent discoveries of the usefulness of 
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collagen mimetic peptide (CMP) as a marker for denatured collagen suggest that when 

used with confocal imaging techniques, it may be useful as an alternative means of 

characterizing collagen damage in cerebral blood vessels. 

Collagen Mimetic Peptide as a Marker  

for Damaged Collagen 

CMP is a family of small synthetic peptides that mimic natural collagens, sharing 

collagen’s unique triple helix structure, as well as the Gly-X-Y triplet repeat sequence (Li 

and Yu, 2013). Traditionally, these peptides have been primarily used to study the 

structure and folding behaviors of collagen (Engel and Bachinger, 2005). While collagen 

loses most of its triple helical properties when melted and subsequently cooled, CMPs 

regain their full triple helical structure, with a slow folding rate (Yu et al., 2011). When 

unfolded in this manner (i.e., by heating and subsequently cooling), some CMPs showed 

the ability to bind to collagen films and gels (Yu et al., 2011).  

Recent work has shown that CMP can bind to collagen denatured by heat, or by 

biochemical processes in gels, in vivo, and in tissue samples (Li and Yu, 2013). In vivo 

studies using systemically delivered CMP conjugated to a near-infrared fluorophore 

have shown its potential for visualizing regions with high levels of ECM remodeling, such 

as tumors and joints (Li et al., 2012).  When labelled with a fluorescent tag, such as 

carboxyfluorescein (CF-CMP), CMP has also been shown to bind specifically to collagen 

in isolated tissue samples (Li et al., 2013). 

 The affinity of CMP to bind to collagen damaged by heat and biochemical 

processes suggests that it may be useful as a marker for collagen damaged 
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mechanically. When used in combination with confocal or MPM methods, this marker 

presents the possibility of visualizing collagen damage in the vessel wall without the 

need for extensive sample preparation or extensive scanning of the sample. 

Objective 

Better understanding of mechanical damage to cerebral blood vessels will 

provide understanding of the mechanisms behind vessel dysfunction following TBI. 

While methods such as electron microscopy, histology, or NLOM have previously been 

used to provide insight into the structural and damage behaviors of the vessel wall, 

none of them are well suited for an in vivo application seeking to understand damage 

after a TBI model. Histological and electron microscopy methods require extensive 

sample preparation and slicing, inherently making in vivo implementation difficult or 

impossible. While NLOM and confocal methods are suitable for imaging intact vessels, 

an attempt to find ECM damage visible to these methods without the use of CMP would 

prove work intensive at best. 

The demonstrated propensity of CMP to bind to collagen denatured by heat and 

biochemical processes suggests its usefulness as a marker for collagen which has been 

damaged mechanically. As a first step toward in vivo implementation, this study seeks to 

characterize the  effectiveness of CMP as a marker for damage due to various levels of 

axial overstretch in isolated lamb middle cerebral arteries.  

 

  



 

CHAPTER 2 
 
 

METHODS 
 
 

Axial mechanical damage was produced in lamb middle cerebral arteries (MCAs) 

following methods similar to previous studies (Bell et al., 2013; Bell et al., 2015; Monson 

et al., 2008). Samples were then stained in CF-CMP. A portion of the samples were used 

to investigate the effects of incubation time on the CMP staining. Samples were then 

imaged using confocal microscopy, and analyzed by a custom Matlab code seeking to 

quantify high intensity CMP marking. All mechanical testing was performed within 48 

hours of animal death, as this is a commonly accepted limit of vessel degradation when 

testing passive properties (Humphrey, 1995). 

Lamb MCAs were selected for this study since they were readily available from 

the slaughterhouse, relatively large in scale (making them easy to work with), and 

presented little difference in structure from human cerebral vessels. While adult ewes 

could have also been used, they were available with far less regularity than lambs. 

Dissection and Sample Preparation 

The heads of three lambs (specific ages were not known due to the nature of the 

meat packing plant operation) were obtained from a meat packing plant where they 

were sacrificed with a humane electrical stunner. As the electrical probes were applied 
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to the brain stem and heart, leaving the MCA relatively far from the direct path of the 

electricity, it was assumed that the electrical stunning had little effect on the vessels 

tested. Since unskinned sheep tissue presents a hazard (Q-fever), it was necessary to 

transport the heads to a facility authorized for the handling of sheep for the removal of 

brain tissue. The heads were kept on ice during transport.  

Within 5 hours of death, the lamb brains were removed from the head, and a 

slice of tissue surrounding each middle cerebral artery (MCA) was dissected out. The 

dorsal portion of the skull directly covering the brain was carefully removed by use of a 

hammer and chisel, taking care not to puncture the brain material. Once the skull 

material had been removed, the dura mater was carefully dissected using a scalpel. The 

brain was then carefully removed from the skull, taking care to cut all connections 

(blood vessels, connective tissue, etc.) without pulling on them. A slice of tissue 

surrounding each MCA was dissected out, and placed in PBS on ice for transport to the 

testing facility. 

Segments of MCA, each between 4 and 5 mm in length (typical diameter of 

approximately 1 mm), were dissected from the surrounding tissue, taking care to 

remove pia-arachnoid tissue. Side branches of the MCA segments were ligated with 

individual fibrils from unwound 6-0 suture, so as to hold pressure. After dissection, 

samples were stored in phosphate buffered saline solution (PBS) at 4°C until mechanical 

testing. Eleven MCA sections were prepared in total. 
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Mechanical Testing 

The mechanical testing of the MCA segments was performed in a manner similar 

to that described previously (Bell et al., 2013; Monson et al., 2008). Briefly, each 

segment was cannulated with hypodermic needles, and secured with 6-0 suture and 

cyanoacrylate glue. In order to allow determination of local stretch values, microspheres 

were applied to the surface of the blood vessel.   

A description of the tester used has been made previously (Bell and Monson, 

2013). The needles on which the MCA was mounted were oriented horizontally, in a 

temperature controlled bath, filled with physiological saline solution (PSS) and 

maintained at 37°C. The distal needle was held stationary, and mounted to a 250 g 

capacity load cell (Model 31 Low, Honeywell, Golden Valley, MN) via an X-Y stage (MS-

125-XY, Newport, Irvine, CA) that allowed for correction of needle misalignment. The 

proximal needle was mounted to the tester by a horizontal, low friction sled connected 

to a voice coil actuator (MGV52-25-1.0, Akribis, Singapore). Position of the actuator was 

given by a digital encoder (resolution 1.0 μm). Motion of the actuator moved the 

proximal needle along the sled track, axially stretching the mounted vessel segment. 

The vessel segment was viewed by use of a digital video camera (PL-A641, Pixelink, 

Ottawa, Canada) mounted to a light microscope (Ziess 2000C, Carl Zeiss Microscopy, 

Thornwood, NY) in order to record vessel geometry during testing. The vessel was 

perfused with warm PSS originating from an open syringe hanging at the appropriate 

height to provide static fluid pressure. The fluid path passed through the proximal 

needle, the vessel segment, and the distal needle. Inline pressure transducers 
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(26PCDFM6G, Honeywell, Golden Valley, MN) were located both proximal and distal to 

the mounted vessel segment, equidistant from the vessel. The average between these 

two transducers was taken to be the pressure inside the vessel segment, or the luminal 

pressure. Data and video acquisition, as well as test setup control, were accomplished 

by a custom LabView program (National Instruments, Austin, TX). 

After mounting the MCA segment, it was preconditioned by oscillating the 

luminal pressure (6.7-20 kPa) for five cycles while length was held constant at various 

subfailure axial stretch values. These preconditioning tests were repeated at increasing 

lengths until the in vivo length (the length at which a change in pressure had a negligible 

effect on the axial force signal (Van Loon et al., 1977)) was determined. A final pre-

conditioning test was performed in which the vessel was held at a length where the 

needle-to-needle axial stretch was λavg ≈ 1.05 times in vivo (IV) stretch. Following 

preconditioning, each noncontrol segment was then subjected to an unpressurized axial 

stretch test to determine its unloaded, or zero load length (ZLL). Noncontrol samples 

were subjected to an axial overstretch at one of four needle-to-needle stretch levels (S1: 

λavg ≈ 1.3*IV; S2: λavg ≈ 1.4*IV; S3: λavg ≈ 1.6*IV; S4: sample pulled axially to failure). 

Following mechanical testing, vessel segments were carefully removed from the needles 

in order to prevent further damage, and each was placed in a well of PBS in a 96 well 

plate. This same 96 well plate was used for all of the staining and rinsing procedures 

mentioned hereafter. 
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Vessel Data Processing 

Data collected during the mechanical testing were processed to find the ZLL, IV 

stretch (λIV referenced to zero load length), needle-to-needle stretch (λavg), and local 

stretch levels corresponding with the locations where samples were imaged confocally 

(λlocal). The ZLL was estimated as the length where the axial load began to increase 

during an unpressurized axial stretch test (Bell et al., 2013).  

Stretch values (λavg, λlocal) were determined with reference to the IV length. The 

needle-to-needle stretch was determined for nonfailure samples as the maximum 

length of the vessel (between the inner edges of the sutures) divided by the IV length of 

the vessel, as determined by data collected from the linear actuator encoders. The local 

stretch values were determined by image analysis. The smaller of either the maximum 

distance between microspheres, or the distance between microspheres just prior to 

observable failure (where applicable) in the images, was divided by the distance 

between the same two microspheres in an image where the vessel was held at the in 

vivo length. As these measurements were taken from the images, care was also taken to 

watch for large-scale failure of the IEL (defined for the purpose of this study as a 

circumferentially oriented tear in the IEL which covers the entire circumference of the 

vessel), which was observable as failure of an inner layer of the vessel prior to loss of 

pressure, as shown in Figure 3. 

Staining 

In order to study the effect of staining incubation time, samples from the first 

two animals were cut in half so as to form two similar cylindrical sections from each  
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Figure 3. Demonstrative figure showing IEL layer failure (marked by arrows) during 
mechanical testing. Note that the vessel shown is still holding pressure at this point 
during testing. 
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sample. In the case of MCA segments which were pulled to failure, the two failed parts 

of the vessel were collected, yielding two cylindrical samples similar to those produced 

by cutting. Samples from the final lamb were left intact, with the exception of samples 

pulled to failure. In cases where half-samples existed, they were placed in separate wells 

of PBS following mechanical testing. In all cases, the same 96 well plate used for storage 

of these samples was used for the subsequent staining and rinsing procedures. 

Concurrent with mechanical testing, a PBS solution containing 20 µM of CF-CMP 

(provided by collaborators in the Michael Yu lab) was prepared, and placed in a vial 

wrapped in aluminum foil (to prevent light exposure). This vial was placed in a 150 mL 

water bath on a hot plate set to 70°C. The CF-CMP solution was left in the water bath 

for 10 minutes, then removed and allowed to cool to room temperature for 5 minutes. 

After cooling, 90 µL of CF-CMP was pipetted into a well for each half (Animals 1 and 2) 

or full (Animal 3) segment, and the vessel segments were moved from PBS to the CF-

CMP solution, taking care to ensure the vessels were fully submerged. One half of each 

segment from the first two animals was removed from incubation after 1 hour. With the 

exception of these half segments, segments were allowed to incubate in the CF-CMP 

solution for 18 hours (“overnight”). During incubation, the well plate was wrapped in 

aluminum foil to prevent light exposure, and stored at 4°C. 

At the end of the incubation period, each segment was moved to a well filled 

with 300 μL PBS, and the well plate was wrapped in foil to prevent light exposure. The 

foil wrapped plate was placed on a shaker for 10 minutes to rinse the vessels. This 

rinsing procedure was repeated three times, for a total of 30 minutes rinsing time. After 
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rinsing, the segments were cut open by slicing the sidewalls lengthwise with scissors. 

Once each segment was cut open, it was laid flat on a glass slide, with the lumen side 

down. The segments were then covered with fluoromount, and a coverslip was placed 

on top. 

Microscopy 

An overview of each segment was first obtained by fluorescence imaging at 4x 

magnification on an upright microscope (Eclipse E600, Nikon Instruments, Melville, NY) 

with a mercury bulb. Images were recorded using a 2-second exposure time. For 

simplicity, confocal stacks were only taken of samples incubated overnight. Each sample 

incubated overnight was then imaged at 10x on an Olympus confocal microscope 

(Model BX61WI, Olympus Scientific Solutions, Waltham, MA) using Olympus FluoView 

Software (Olympus Scientific Solutions, Waltham, MA). Confocal stacks were taken with 

a step size of 2 µm from the luminal wall (defined as the slice 6 µm to the luminal side of 

where the internal elastic lamina was in focus) to the exterior edge of the vessel wall 

(defined as the slice where adventitial features reached peak brightness). Stacks were 

taken side by side so as to obtain an image strip covering the full circumference of the 

vessel, as diagrammed in Figure 4. For each stack, data were collected from the green 

(AlexaFluor 488; HV: 550; Gain: 1; Offset: 6) channel to show CF-CMP fluorescence, as 

well as the blue (AlexaFluor 405; HV:550; Gain:1; Offset: 6) channel, since this channel 

allowed visualization of the IEL. In general, an effort was made to avoid imaging within a 

field of view of the suture sites or the failed edges of cut samples. 

Since MCA segments from the first two animals were cut in half, it was only  
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Figure 4. Diagram of how image stacks were taken so as to obtain an image strip of the 
full vessel circumference. Image is demonstrative, and not intended to represent any 
specific scale. 

 

possible to obtain one image strip from each 18-hour segment. Segments from the third 

animal, however, were of full length, so that two or three image strips could be 

obtained from each. Each of these strips was treated separately when performing image 

analysis, rather than stitching them together to obtain a single, larger stack. 

Image Analysis 

Side by side stacks were stitched together using a custom Matlab script (included 

in the Appendix) to form stacks covering the full vessel circumference.  These stacks 

were then masked in order to remove background pixels on either side of the vessel, 
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and confounding structures such as microspheres, branches, and sutures. This masking 

was accomplished by first removing all pixels below a user-defined background 

threshold. Other structures were then removed by user-defined areas, drawn directly 

on an image from the stack. This masking allowed for metrics to be normalized by the 

number of usable pixels in the image, rather than the full number of pixels.  

After masking, the stacks were analyzed using a custom Matlab code (included in 

the Appendix) to find the maximum pixel brightness in each image, the average pixel 

brightness in each image, the number of “bright pixels”, and the number of lines in the 

image, as found by the Hough transform.  The number of bright pixels was defined as 

the number of pixels in an image which exceeded 2.0 times a control value. The control 

value used for each vessel was the average brightness of the brightest image from the 

control sample from the same animal and staining batch (i.e., if the average brightness 

of images from a control sample was plotted as in Figure 5, the control value would be 

the peak of the curve shown). In order to account for variations in wall thickness, 

metrics were plotted as a function of normalized wall depth (defined as the current 

depth divided by the maximum wall depth, or thickness). 

Statistical Analysis 

Results of the metrics outlined above were analyzed for statistical significance by 

splitting the results into three groups: controls, subfailure damage (S1, S2, and S3), and 

failure damage (S4). For each metric tested, a single value per sample was first 

determined. For the maximum pixel brightness metric, the average across all images 

was used; for the number of lines found by the Hough transform, the average value  
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Figure 5. Demonstrative image of control value determination for use in bright pixel 
metric. The control value used in determination of bright pixels is the same as the 
maximum of the data shown. Data are from a control sample from this study. 

 

across all images was used. For the average pixel brightness, and percent bright pixels 

metrics, the peak values (i.e., the value from the image with the highest average pixel 

brightness, and the value from the image with the highest percent bright pixels) were 

used. A Levine test was performed based on the medians, in order to determine if the 

variances in the group were similar. In cases where the variances were similar (p-values 

from the Levine test of more than .05), ANOVA was used to determine if a significant 

difference in means between the groups existed (p-values from ANOVA less than .05). 

Where appropriate, t-tests were then performed to compare the groups. Where the 

Levine test showed ANOVA was not suitable (p-values less than .05), Welch’s ANOVA 

was used, and, as appropriate, a Games-Howell test was used to check for statistical 

differences between groups.  
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CHAPTER 3 
 
 

RESULTS 
 
 

Eleven vessel segments in total were tested. Multiple image sets were taken of 

samples from the final animal, resulting in seventeen image sets total. Table 1 presents 

a summary of these results by animal, including the label applied to each image set, as 

well as the needle-to-needle stretch the vessel experienced, and a measure of the local 

stretch in the region where confocal images were taken. In the case of Vessel 1 from 

Animal 3 (S4_6, S4_7, S4_8), the numerous occurrences of IEL failure during testing, as 

well as the distribution of microspheres on the vessel, made local measures of stretch 

for each image set vary widely. Results are presented, therefore, for a measurement 

encompassing all three imaging regions. 

Incubation Time Study 

Fluorescence microscopy images of incubation time study samples from the first 

and second animals are shown in Figure 6 and Figure 7, respectively. All of the images in 

the figures were taken at 4x magnification with a 2-second exposure time; the images 

are oriented so that vertical and horizontal correspond to the axial and circumferential 

directions, respectively. Note the significant difference in sample brightness between 

the 1-hour and overnight images, making the samples incubated for a shorter duration  
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Table 1. Summary of results. ZLL is the zero load length, determined from an 
unpressurized axial stretch test. λIV is the axial stretch (referenced to the ZLL) at the in 
vivo length. λavg is the needle-to-needle stretch (referenced to the in vivo length), 
determined from actuator measurements. λlocal is the stretch level (referenced to the in 
vivo length) in the region imaged, as determined from measurement of microspheres in 
the test video. Vessel 3 of Animal 1 and Vessel 4 of Animal 2 (marked with ‘*’) were 
overstretched multiple times prior to the final overstretch test. Values of λlocal for Vessel 
1 of Animal 3 (marked with ‘†’) were obtained by a single microsphere measurement 
over the full imaged area, due to the distribution of microspheres and multiple IEL 
failures in the area of interest. 

Animal Vessel ZLL λIV λavg λlocal Label 

1 

1 -- -- 1.05 -- C1 

2 4.51 1.23 1.60 1.35 S4_1 

3* 3.12 1.17 Failure 1.73 S4_2 

2 

1 5.19 1.1 1.30 1.23 S1_1 

2 -- -- 1.05 -- C2 

3 3.64 1.16 1.40 1.19 S2_1 

4* 3.59 1.14 1.63 1.36 S3_1 

3 

1† 4.76 1.16 Failure 

1.35 S4_6 

1.35 S4_7 

1.35 S4_8 

2 5.6 1.13 Failure 

1.34 S4_3 

1.47 S4_4 

1.43 S4_5 

3 4.29 1.23 1.40 
1.29 S2_2 

1.45 S2_3 

4 -- -- 1.05 
-- C3 

-- C4 
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Figure 6. Fluorescence images of time study samples from Animal 1. The brightened 1-
hour images (a2, b2, c2) were brightened by displaying only pixels between 0 and 100, 
so that bright spots showed close to the same level of fluorescence as bright spots in the 
overnight samples (a3, b3, c3). The scale bar in the brightened image of C1 (a2) is 
equivalent to 1 mm. 
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Figure 7. Fluorescence images of time study samples from Animal 2. Images of 1-hour 
samples were brightened in the same manner as in Figure 6. The scale bar in the 
brightened image of C2 (a2) is equivalent to 1 mm. 
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more difficult to interpret. After the images were manually brightened, however, the 1-

hour samples showed features similar to the overnight samples. 

While no formal quantification of these images was performed, in order to 

compare the brightened images to the overnight samples, a simple analysis of pixel 

values was performed. A pixel from one of the bright streaks in each of the damage 

samples of Animal 1 was evaluated to get red, green, and blue (RGB) values. A pixel 

from another “background” section of the vessel was then evaluated to get its RGB 

values. It was found in this comparison that red values for all pixels sampled were very 

low (less than 7). Green values for background pixels tended to be similar between both 

groups (between 40 and 60). These pixels in the brightened images showed somewhat 

higher blue values (35 compared to between 16 and 24). The green values from the 

bright features differed, however, with brightened images giving values around 120, and 

the overnight images giving values between 160 and 200. Taking the ratio of green 

values between bright streak pixels and corresponding background images gave values 

of 4.95 and 3.03 for the overnight images, compared to 2.5 and 2.65 for the brightened 

images. This suggests that while the features shown in both images are similar, the 

background pixels in the brightened images are much closer in brightness to the bright 

streaks. This suggests that while staining has begun at 1 hour, at 18 hours, there is a 

better chance of staining showing a difference between background pixels and the 

features visualized as bright streaks in the fluorescence images. 
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Damage Study 

Qualitative Image Analysis 

The damage study was conducted using samples stained overnight, so that all 

samples shown hereafter are from overnight incubations. Fluorescence images of each 

sample are presented by animal in Figure 8, Figure 9, and Figure 10 (i.e., Figure 8 shows 

samples from Animal 1, Figure 9 from Animal 2, and Figure 10 from Animal 3). The 

images consistently show a number of bright, axially oriented streaks in samples pulled 

to the two most extreme stretch levels (S3 and S4, λavg between 1.6 and failure level), 

and an absence of such streaks in control samples. Lower stretch level (λavg from 1.3-1.4) 

samples show some evidence of streaks similar to those in the S3 and S4 (λavg from 1.6 

to failure) samples, but there appear to be fewer streaks, and they appear to be less 

bright. All of these observations were made qualitatively, as fluorescence images were 

intended to be used only as an overview to inform the confocal imaging and analysis 

process. 

Stitched confocal image stacks from the samples were first analyzed qualitatively 

by direct observation. Demonstrative images from the green (CMP staining) channel of 

each stack are shown in Figure 11, Figure 12, and Figure 13. These figures are organized 

by animal (i.e., Figure 11 shows images from the first animal, Figure 12 from the second, 

and Figure 13 from the third). All images in these figures were adjusted to show pixels 

with intensity values between 42 and 4079, so that brightness could be compared 

directly between images. Images were selected by use of the normalized wall thickness 

parameter defined in the Methods section. The inner media images were defined as the  
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Figure 8. Fluorescence images of samples from Animal 1. (a) control. (b) and (c) S4 
(pulled to failure) samples. The scale bar in the image of C1 (a) is equivalent to 1 mm. 
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Figure 9. Fluorescence images of samples from Animal 2. (a) control. (b) S1_1 ( λavg ≈ 
1.3*IV). (c) S2_1 (λavg ≈ 1.4*IV). (d) S3_1 (λavg ≈ 1.6*IV). The scale bar in (a) is 
equivalent to 1 mm. 
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Figure 10. Fluorescence images of samples from Animal 3. (a) control. (b) S2_2, S2_3 
(λavg ≈ 1.4*IV). (c, d, e) S4 (samples pulled to failure). The scale bar in (a) is equivalent 
to 1 mm. 
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Figure 11. Green channel (CMP) confocal images of samples from Animal 1. Images are 
oriented so that the horizontal and vertical directions correspond with the axial and 
circumferential directions, respectively. Inner media was defined as the image closest to 
5 percent through the normalized thickness; media was defined as the image closest to 
50 percent through the thickness; adventitia was defined as the image closest to 75 
percent. (a1, a2, a3) control sample. (b1, b2, b3) S4_1 (λlocal = 1.35), and (c1, c2, c3) 
S4_2 (λlocal = 1.73), both of which were pulled to failure.  
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Figure 12. Green channel (CMP) confocal images of samples from Animal 2. The images 
are organized in the same manner as in Figure 11; that is, (a1, a2, a3) control sample, 
with the other samples in ascending order from low stretch level to high stretch level. 

  

inner media media adventitia

C
2

(a1) (a2) (a3)

S1
_

1

(b1) (b2) (b3)

S2
_

1

(c1) (c2) (c3)

S3
_

1

(d1) (d2) (d3)



32 

 

 

 

 

 

 

 

 

 

 

Figure 13. Green channel (CMP) confocal images of samples from Animal 3. (a1-3, b1-3) 
two sets of images from the same control sample. Images from S2_2 (c1-3) and S2_3 
(d1-3) are from two sets of images of the same vessel segment. The remainder of 
samples were from failure level samples. Images labelled S4_3 (e1-3), S4_4 (f1-3), and 
S4_5 (g1-3) were from the same segment. S4_6 (h1-3), S4_7 (i1-3), and S4_8 (j1-3) were 
also taken from the same segment. 
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image closest to 5 percent through the thickness, the media images as the slice closest 

to 50 percent, and the adventitia images as the slice closest to 75 percent. Vessel wall 

thickness, as found from the confocal stacks, ranged from 22 μm to 42 μm. 

Examination of these figures shows that in all cases, images from the media and 

adventitia of noncontrol images exhibit bright, streak-like features oriented in the axial 

direction. The intensity and density of these streaks appears to increase sharply in 

moving from the S2 level (λavg = 1.40) samples to the S3 (λavg = 1.63) and S4 (sample 

pulled to failure) level samples. The axial orientation of these streaks, as well as the fact 

that their brightness appears to peak in the outer media or adventitia of the vessel wall, 

suggests that CMP is binding to damage sites on large, axially oriented fibers in the 

adventitia. While these features are visible in the media, this is likely due to the large 

optical section thickness (the thickness through depth of an image taken by the confocal 

scope; 10.66 μm at 10x magnification) of the confocal setup used, which was close to 

half the wall thickness for the thinnest samples imaged. Since collagen in the media has 

previously been shown to be primarily helically oriented, it is unlikely that it would be 

severely damaged during an axial stretch event.  

It is also worth noting that the samples from the third animal were significantly 

less bright than those from the other animals. This difference was accounted for in the 

later counting of bright pixels by use of a control value determined from the control 

vessel associated with each animal. 

Examination of both fluorescent images and confocal images also showed some 

correlation between the target stretch level and the presence of large-scale failure of 
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the IEL. While IEL tearing was present in virtually all samples at the sites where vessels 

were tied down using suture, control samples showed no large-scale IEL failure between 

suture sites in mechanical testing video, or in the fluorescence images.  With the 

exception of C1, blue channel confocal images of the control samples (shown in Figure 

14) showed no IEL tears larger than one third of the diameter of any control sample. 

Given that the large IEL tears present in C1 are oriented axially rather than 

circumferentially, it is unlikely that they are due to the mechanical testing procedure. It 

is possible that they occurred due to the process of laying the vessel flat on the slide. 

 Demonstrative blue channel IEL images of the damaged samples are shown in 

Figure 15 and Figure 16. Figure 15 shows images from all S1, S2, and S3 samples. While 

the majority of these samples showed IEL damage comparable with the control levels, 

S2_1 had one instance of large-scale IEL failure, which was visible both in mechanical 

testing video and in fluorescence images of the sample. The other sample stretched to 

the same level did not exhibit the same level of IEL failure, suggesting that the S2-S3 

(λavg = 1.4-1.6; λlocal = 1.19-1.36) stretch level is near the threshold for large-scale IEL 

failure. 

 Due to the large number of S4 images, demonstrative images only are presented 

in Figure 16. In every S4 sample, multiple instances of significant IEL failure were present 

and were visible in the mechanical testing video and in fluorescence imaging. 

Quantification 

All confocal images were evaluated to determine four metrics. Images were first 

analyzed to determine the average pixel brightness value, as the maximum value of this  
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Figure 14. Blue channel IEL images of control samples. (a) Animal 1, (b) Animal 2, (c) and 
(d) Animal 3 
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Figure 15. Blue channel IEL images of S1, S2, and S3 samples. 
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Figure 16. Demonstrative blue channel IEL images of S4 level samples 
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metric for each control was used in determining the percent of the image that was 

composed of bright pixels. After the average pixel values were evaluated, three other 

metrics were also evaluated: the maximum pixel intensity, the percent bright pixels, and 

the number of lines found by the Hough transform. 

Prior to analysis for other metrics, it was necessary to find the average pixel 

brightness for each confocal image of each sample. This metric was analyzed for two 

reasons: firstly, it was analyzed to determine if damage to the samples caused an 

increase in the overall brightness of the images; secondly, the average brightness values 

from the control sample of each animal were used as a means of normalizing for 

variation between samples. This metric proved to be have a similar distribution through 

the wall thickness for all samples, following a parabolic or bell curve as demonstrated by 

the values for samples from Animal 2, shown in Figure 17. For simplicity, only the peak 

values (i.e., the maxima of the curves from Figure 17) are presented in Figure 18 and 

Figure 19. Because the magnitudes of the control values for the first two animals were 

so similar (as shown in Figure 18), an average of the peaks of C1 and C2 was used in the 

final quantification of the percent bright pixels for samples from the first two animals. 

An average of C3 and C4 was used in the bright pixel quantification of the third animal. 

Figure 19 shows the peak values of average intensity, split by animal. Aside from 

the large decrease in peak brightness of samples from the third animal as compared to 

the first two, little difference between samples was observed for this metric. ANOVA 

comparison of the peak values of the average brightness curve showed no significant 

difference between the control, subfailure, and failure damage groups, whether  
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Figure 17. Average pixel intensity as a function of normalized wall thickness for samples 
from Animal 2. 
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Figure 18. Peak values of average intensity for control samples. The values shown were 
used as the control values in determining the percent bright pixels. Error bars represent 
standard error for image averages (13 images minimum). 
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Figure 19. Peak values of average intensity for each sample. (a) samples from Animal 1. 
(b) samples from Animal 2. (c) samples from Animal 3. Error bars represent standard 
error for image averages (11 images minimum). 

 

 

comparing samples from Animals 1 and 2 only (p = 0.7802) or from all animals (p = 

0.94881). This was unsurprising, considering that there does not seem to be a significant 

difference in overall image brightness between the images from controls, and the 

images from damaged samples (see Figure 11, Figure 12, and Figure 13). 

The maximum pixel intensity was also calculated for each confocal image of each 

sample, and plotted as a function of the normalized wall thickness; these graphs are 
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shown in Figure 20. This metric was selected because it was hoped that it might detect 

the bright streaks in the confocal images. However, this metric shows little of interest, 

beyond the fact that for every sample except one, the maximum converges to the 

saturated value of 4095. Considering that even the images from Animal 3, which have 

lower average intensity values than those from Animals 1 and 2 (see Figure 19), 

converge to this value, it is likely that this convergence is a function of stray pixels or 

features such as dust or bubbles. ANOVA of values derived from averaging the peak 

brightness through the thickness showed no significant difference between control, 

subfailure, and failure groups (p = .3280). While this metric did not show anything of 

interest, it was included to show that it was explored. The maximum intensity, and 

Figure 20 will not be further referred to in the results. 

The percentage of pixels having a brightness of more than double the control 

values (control values were 1375 for samples from the first or second ewe, 637 for 

samples from the third) is plotted as a function of normalized wall thickness in Figure 

21. This metric was selected because it appeared that the high stretch level samples had 

very bright streaks, with much dimmer background pixels than corresponding controls. 

The metric clearly differentiates higher stretch level (λavg = 1.6 to failure) samples from 

both control and lower stretch level (λavg = 1.3 to 1.4). The peak values of all S3 (λ avg = 

1.6) and S4 (pulled to failure samples exceeded the peak values of all control, S1 (λavg = 

1.3) and S2 (λavg = 1.4) samples. With the exception of S4_1, the peak values of all S3 

and S4 samples were more than three times the highest peak value for an S2 sample 

(S2_2), with some of the S4 peak values as much as twenty times the peak value for  
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Figure 20. Maximum pixel intensity as a function of normalized wall depth. (a), (b) and 
(c) show samples from the first, second, and third animals, respectively. The saturated 
value (i.e., the maximum possible value for a pixel in these images) is 4095. 
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Figure 21. Percent bright pixels as a function of normalized wall depth. For simplicity, 
the points are color coded by stretch level (i.e., controls are in black, S1 in green, S2 in 
blue, S3 in brown, and S4 in red).  

 

 

S2_2. While S4_1 does peak relatively low on the graph, its peak is still slightly above 

that of S2_2 (the S2 level sample with the highest peak in this graph), and well above 

the highest control value. 

The same data are presented by animal in Figure 22. While samples from Animal 

3 displayed a lower average brightness than those from Animals 1 and 2, some samples 

showed a much larger measure of percent bright pixels. A large degree of variation was  
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Figure 22. Percent bright pixels as a function of wall depth, by animal. (a) samples from 
Animal 1. (b) samples from Animal 2. (c) samples from Animal 3. 
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observed in this metric when comparing image sets taken from the same vessel 

segment (S4_6, S4_7, and S4_8, for instance), so that some of the difference between 

the animals may be accounted for in the natural variation across a vessel segment; that 

is to say, the locations imaged on the samples from Animals 1 and 2 may simply not  

have been the locations with the highest concentrations of CMP marking. S4_6, for 

instance, falls well within the same range as S4_2, whereas S4_7 and S4_8 (from the 

same vessel segment) have higher values. It is worth noting that the values of λlocal for 

S4_6, S4_7, and S4_8 (found by a measure over the entire imaging range of the vessel 

segment) as well as S4_2 were essentially identical (λlocal = 1.35). The extremely high 

values associated with the samples from Vessel 2 of Animal 3 (S4_3, S4_4, S4_5) may be 

due to higher values of local stretch (λlocal = 1.34-1.47) experienced by the vessel. It is 

clear from the confocal images (Figure 13), however, that these vessels do indeed show 

larger bright streaks compared to images from the first two animals. 

The same data are replicated again in three forms in Figure 23, separated by 

stretch level. Examination of part (b), which shows S1 and S2 samples, reveals the 

possibility of a difference in peak percentages of bright pixels between S1 and S2 

samples. It should be recalled, however, that S2_3 and S2_2 are separate image sets 

from the same blood vessel, so that more samples would be required to establish this 

conclusively. 

Of note also in Figure 23 is the difference in the wall position at which the peak 

percentage of bright pixels occurs. While control, S1, and S2 samples often peak at or 

before 50 percent through the wall thickness, the S3 and S4 samples consistently peak 



48 

 

 
Figure 23. Percent bright pixels as a function of normalized wall depth. Data are the 
same as in Figure 21, but for visibility are grouped by stretch level. In order to better 
visualize the location at which peak values occur, it was necessary to present the graphs 
with different y-axes, so care should be taken in making comparisons between graphs. 
(a) presents the control sample data. (b) presents data from S1 and S2 samples. (c) 
presents data from S3 and S4 samples.  
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well above 50 percent through the thickness. While this observed difference could be 

due to the difficulty in defining the outside edge of the vessel in confocal images, 

especially the control images, which do not exhibit the unique bright streaks that clearly 

define the adventitial fibers in the S3 and S4 samples, it does agree with the observation 

that the collagen fibers to which CMP binds following high stretch events are primarily 

located in the adventitia or the outer media of the blood vessel wall. 

The peak values of the percent bright pixel measurement are presented in Figure 

24 as a function of the overstretch (λlocal in Table 1). In general, the data show an 

upward trend as stretch increases. The exception to this is S4_2, which exhibited a very 

high stretch level, but a relatively low percentage of bright pixels. This may be due in 

part to the fact that S4_2 was subject to several glitches in the control system during 

initial zero load length tests, exposing it to multiple high level stretches before the 

overstretch test. Even including this outlier, however, ANOVA comparison of the peak 

percent bright pixels showed a significant difference between control, subfailure, and 

failure groups (p = 0.0035). A t-test showed a significant difference between controls 

and failure level samples (p = 0.0032), and between subfailure and failure samples (p = 

.0038), but not between the control and subfailure samples (p = 0.6536). This agrees 

with observations made directly from the images, which showed a significant increase in 

the number of bright streaks between the samples with needle-to-needle stretch levels 

below 1.4, and those above this value, or pulled to failure.  

The final metric was the number of peaks in the Hough transform per unit area, 

which is presented as a function of normalized wall thickness in Figure 25. This metric 
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Figure 24. Peak percent bright pixels as a function of overstretch. 
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Figure 25. Hough lines per unit area. Samples from: (a) Animal 1; (b) Animal 2; (c) Animal 
3. 
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was selected as it presented the possibility of counting the number of straight lines in 

the images, perhaps allowing a “number of streaks” metric. The graphs are presented by 

animal, so that (a) shows samples from Animal 1, (b) from Animal 2, and (c) from Animal 

3. While S4 samples from Animal 1 and Animal 3 showed higher values of this metric in 

the adventitia than their respective controls, samples from Animal 2 do not appear to 

show a correlation between the maximum overstretch, and the values of this metric. 

Average values of this metric through thickness are shown in Figure 26. ANOVA of these 

values showed no statistical difference between control, subfailure, and failure groups 

(p = 0.1558). 
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Figure 26. Average number of Hough peaks per μm. Error bars denote standard error. 
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CHAPTER 4 
 
 

DISCUSSION 
 
 

The purpose of this study was to investigate and characterize the effectiveness 

of CMP as a marker for damage to cerebral blood vessels subjected to various levels of 

axial overstretch. Investigation of incubation time showed that while similar features 

are visible as a result of 1-hour and overnight incubation times, the background appears 

to be brighter as compared to features of interest in the 1-hour samples. Qualitative 

evaluation of fluorescence and confocal microscopy images showed bright streaks in 

images subjected to high levels of axial stretch. Confocal stacks revealed that these 

bright streaks were primarily concentrated in the outer parts of the vessel wall, 

suggesting that fibrous, axially oriented structures in the adventitia were the primary 

locations of damage to collagen. Quantification of images from the confocal stacks 

revealed no significant difference in the average brightness of the brightest image 

between controls and damaged samples. The percentage of image pixels with 

brightness above a threshold proved a valuable metric for differentiating samples pulled 

to failure from controls, but not for differentiating between controls and samples pulled 

to subfailure levels. 
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Location of Damaged 

Collagen Fibers 

It is suggested that the bright, axially oriented structures visible in fluorescence 

and confocal images of damaged samples represent CMP binding to denatured collagen 

in fibrous, axially oriented structures of the adventitia, which are damaged during axial 

overstretch. This hypothesis is based in two factors: 1) the fact that confocal images 

show these features primarily in the outer part of the blood vessel, and 2) previous work 

has shown a significant portion of the adventitia in cerebral vessels to be composed of 

axially oriented collagen fibers (Finlay et al., 1995; Wicker et al., 2008).  

Direct observation of the confocal images in Figure 11, Figure 12, and Figure 13 

clearly shows the appearance of the bright streaks to be best visible in the adventitia 

images. Examination of images from the same vessel segment, such as S4_6, S4_7, and 

S4_8 in Figure 13, shows that these features continue along the length of the vessel in a 

similar location circumferentially. While the location of the peak value of the percent 

bright pixels was not analyzed statistically, it was observed that the peak of this metric 

generally appeared to occur beyond 50 percent of the way through the wall thickness in 

samples which were pulled to failure. 

An understanding of the previous work done in characterizing the structure of 

cerebral vessels is important to interpreting the images from this study, since confocal 

images from the media of damaged samples show bright, streak like features, similar to 

those in the adventitia images (Figure 11, Figure 12, and Figure 13). While it may be 

tempting to interpret these streaks as damage to collagen fibers in the media, previous 
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work in cerebral arteries suggests that medial collagen is nearly circumferentially 

oriented, whereas collagen fibers in the adventitia tend to be more axially oriented 

(Finlay et al., 1995; Wicker et al., 2008). As such, it is far more likely that the appearance 

of these features in images of the media is due to the low z-resolution of the confocal 

setup used. Either a higher magnification interrogation of these samples, or a more 

sophisticated setup with higher z-resolution at the same magnification, could serve to 

better establish the location of these features. 

Quantification of CMP 

Damage Marking 

Four metrics for quantifying damage marked by CMP staining were proposed in 

the Methods section of this study: maximum pixel intensity, average pixel intensity, 

percent bright pixels, and number of lines, as counted by the Hough transform. Of these 

four, only one, the percent bright pixels, was found to show a statistical difference 

between control samples, and damaged ones.  

Even the percent bright pixels, however, failed to show a statistically significant 

difference between controls, and samples pulled to subfailure stretch levels. It is 

possible that the failure to demonstrate a significant difference between controls and 

subfailure samples was due to the small number of subfailure samples (one or two 

vessel segments per stretch level) used. A larger number of subfailure stretch samples 

may serve to better show a significant difference between subfailure stretch levels 

(especially stretch levels in the vicinity of those experienced by S3_1, i.e., λlocal > 1.4), 

and controls; however, the abrupt change in staining between the samples exposed to 
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the lower stretch levels (λavg = 1.3-1.4) and the samples exposed to high or failure level 

overstretch (λavg = 1.6 to failure) suggests that the difference between controls and 

subfailure samples is more subtle, and may require a more sophisticated metric. 

Average brightness failed to show a difference between controls and damaged 

samples. This may be due in part to the large brightness difference between samples 

from Animals 1 and 2, and from Animal 3, resulting in the requirement to either break 

up samples by animal, resulting in small groups, or to use groups with an artificially high 

degree of variation; thus, further investigation of this metric may be warranted. In the 

current study, however, the average brightness did demonstrate that in general, the 

brightest images of the sample were obtained from the center of the wall. It is likely that 

this is due to the amount of surrounding tissue, and the low z-resolution of the confocal 

imaging method used. In the center of the tissue, there is a maximal amount of tissue 

within the optical slice obtained by the microscope, so that images have brighter 

background values; as such, this metric may serve as a useful means of determining the 

location in the vessel wall in future studies, removing some of the subjectivity in the 

process of selecting the inner and outer edges of the vessel. The medial location of the 

peak value of average brightness lends greater strength to the results of the percent 

bright pixel quantification. While the average brightness generally peaked in the media 

of the vessel, the percent bright pixels generally appeared to peak in the adventitia of 

vessels exposed to failure level overstretches. 

While the statistical analysis of some metrics may have been improved by a 

larger sample size, the sample size used in this study was sufficient to show a 
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statistically significant difference in CMP staining of cerebral blood vessels between 

control samples, and samples pulled axially to failure. While more subfailure samples 

may be advisable in future studies, the focus on failure level samples in this study was 

essential to this initial quantification. 

IEL Failure Compared to CMP Marking 

Comparison of IEL failure observations and CMP marking observations is 

advisable for two reasons. Firstly, previous work in noncerebral arteries (Fonck et al., 

2007; Wan et al., 2010) has suggested an interaction between elastin and collagen 

structures in mechanical loading of blood vessels. Given that during mechanical testing 

of the vessels used in this study, IEL failure was generally observed at close to the same 

stretch levels at which CMP staining became most pronounced, it is advisable that this 

interaction be addressed.  Secondly, while CMP presents a relatively easy method of 

staining for damage due to high levels of axial stretch, observation of IEL failure requires 

no staining whatsoever, as the IEL is present as a part of vessel microstructure. Thus, 

close examination of the IEL for layer failure may present an alternative to the use of 

CMP staining in identifying damaged regions. 

Large-scale IEL failure, as mentioned previously, was visible in all samples 

stretched to failure (S4). It is of great interest that this is also the level of stretch 

associated with the most CMP staining. Previous work in other blood vessels has 

suggested that loss of functional elastin structures causes a significant change in 

mechanical response of blood vessels, whether the vessel has been allowed to remodel 

to adapt to this condition (Wan et al., 2010), or not (Fonck et al., 2007). Thus, it is 
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possible that extensive damage to the IEL and other elastin structures could result in 

changes to the response of load bearing collagen fibers in the adventitia. Given that 

collagen is both much stiffer and much stronger than elastin (Finlay et al., 1998); 

however, it seems unlikely that the elastin structures would carry a significant enough 

portion of the load to cause IEL failure prior to failure of collagen structures. It is posited 

as a more likely theory that local damage to load bearing collagen structures results in 

high levels of local stretch as the load is taken up by other fibers. This high level of local 

stretch would result in failure of the IEL.  

This hypothesis is supported by images of S3_1, which exhibited no visible layer 

failure of the IEL, but shows staining comparable with S4 samples, as demonstrated by 

direct observation of fluorescence (Figure 10) and confocal images (Figure 13), and by 

the percent bright pixels metric (Figure 21). S3_1 was unique in that it was subjected to 

multiple overstretches of increasing severity in an attempt to achieve the highest 

possible subfailure overstretch. Previous work in cerebral arteries (Bell et al., 2015) has 

shown that subfailure overstretch results in permanent changes to the mechanical 

properties of a vessel, possibly due to rearrangement of the microstructure. If such 

rearrangement of the microstructure caused more even load distribution across 

collagen structures in the adventitia, it is possible that a level of damage sufficient to 

cause CMP binding to collagen structures might occur without the high local stretch 

phenomena associated with IEL failure. 

While one instance of IEL layer failure was visible in S2_2, this failure occurred 

very near the end of mechanical testing (3 frames prior to the maximum overstretch), 
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whereas the first occurrence of IEL failure visible in failure level samples was generally 

earlier in the overstretch process. Also, in most cases, failure level samples exhibited 

many instances of IEL failure, compared to the single instance exhibited by S2_2. The 

fact that a single instance of IEL failure in S2_2 was insufficient to cause CMP binding 

comparable with that observed in S4 samples suggests that failure of multiple large 

collagen structures is necessary to obtain widespread CMP binding. More work is 

required in order to establish the relationship between CMP binding and IEL layer failure 

during axial overstretch. 

IEL failure may be a useful method of detecting mechanical damage due to axial 

overstretch under the correct conditions. As a marker for damage, however, CMP 

presents the advantage of being readily visible in fluorescence images with relatively 

low magnification, reducing the effort required in order to identify damage locations. 

Also, considering it is likely that most axial loading is carried by the collagen structures in 

the blood vessel, CMP presents the advantage of marking the structures which are 

actually damaged. While this study did not attempt higher magnification interrogation 

of the samples, it is probable that such interrogation would provide a better 

understanding of what structures are damaged during overstretch. 

Potential for Use In Vivo 

The methods used in this study show promise for in vivo, or at least in situ 

application. A confocal approach similar to that used in this study could be used for 

imaging intact vessels, at least on the surface of the brain. An excellent first step toward 

implementing this method would be to repeat this study, but image vessels in an intact 
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state, rather than cutting them open and laying them flat on the slide. In order for this 

study to best succeed, it would be advisable to use a different confocal setup, or a 

higher magnification in order to obtain stacks with better z-resolution.  

CMP could be administered via the bloodstream by perfusion for later in situ 

imaging, or by injection into a living animal shortly after injury. If this administration 

method proved a problem, the CMP could also be administered to surface vessels 

simply by soaking the intact brain tissue in CMP; using the soaking method might also 

eliminate the need to re-evaluate concentration or incubation time as factors in the 

staining process. 

Initial forays into in situ staining and imaging done in parallel with this study 

proved challenging. Little was understood about the nature of the features that CMP 

staining would present, and initial experiments were carried out using brain tissue from 

mice, with much smaller vessels than those used in this study. Where possible, the use 

of tissue similar to that used in this study (i.e., large cerebral vessels from lambs) may 

provide a better starting point for evaluation of CMP as a marker of damage in situ. 

Effects of Incubation Time 

This study qualitatively compared images from samples with 1-hour and 

overnight incubation times. A significant difference in overall image brightness was 

noted. This is likely due to the amount of CMP binding which has occurred at the time 

point in question. When brightened, the images incubated for 1-hour showed similar 

features to those from the 18-hour incubation; however, the difference between 

background pixels and the bright streaks observed in damaged samples was much 
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smaller in the samples from the 1-hour incubation time. This suggests that while CMP 

binding has begun at the 1-hour time point, a large portion of the background staining 

also occurs during this time. By the 18-hour time point, background staining has likely 

slowed, while staining of damaged features has not. For this reason-i.e., the increased 

difference between background pixels and features of interest, the 18-hour incubation 

period is suggested. The 18-hour incubation period is also advantageous in that the 

processes of removing the lamb brain, dissecting vessels, and testing them often result 

in the staining incubation time beginning around the normal end of the workday. The 

overnight incubation period allows for a researcher to maintain normal working hours, 

while simultaneously obtaining improved results. 

Confocal Image Selection 

The process used in selecting the locations from which to obtain confocal images 

for damage evaluation and quantification necessarily involved some human 

interpretation. In most cases, avoiding the failed edge and the suture region resulted in 

a relatively constrained space within which to image, so that little risk of human 

influence in the procedure existed. Where a risk of human influence on the selection of 

imaging sites did exist, it was primarily focused on minimizing the number of branches in 

the region of interest. In the case of vessels from Animal 3, virtually the entire vessel 

area, with the exception of areas within a field of view of failed edges or suture 

locations, was imaged and analyzed. While a broad level of variation of the percent 

bright pixels did exist in images from different regions of the same vessel, the regional 

variation was much smaller than the variation between failure and subfailure samples. 
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The exclusion of the suture region was deemed necessary, since it was subject to 

end effects associated with the constraint imposed by the suture. In general, the suture 

region showed IEL failure (although this failure appeared most often as jagged, joined 

tears, rather than the relatively straight, single line observed in the layer failures seen 

during mechanical testing), and bright streaks of CMP staining. 

The decision to avoid failed edges almost certainly reduced the level of CMP 

staining observed in samples pulled to failure, since the failed edges were stained very 

brightly. It was decided early in the study, however, that a greater interest should be 

placed on regions not subject to failure, since the usefulness of a marker for failed blood 

vessels is relatively limited. 

Differences in Brightness 

Between Animals 

While little difference in average brightness existed between samples from 

Animals 1 and 2, samples from Animal 3 were shown to be significantly less bright. It is 

possible that this brightness difference is due to a number of factors associated with 

variations between animals (i.e., vessel wall thickness, collagen content). While the 

vessel walls were generally found to be thinner in this animal than in the previous two, 

these measurements were made by confocal imaging, so that a change in staining could 

have affected the measurements. It is possible that minor variations in the staining 

procedure, such as a small difference in concentration or the heating time of the CF-

CMP solution could be responsible for these differences, and may have resulted in the 

differences in measured wall thickness. 
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Outliers 

Examination of Table 1 will immediately reveal that S4_2 experienced a very high 

overstretch, inconsistent with the stretch levels experienced by other S4 vessels. This 

very high level of overstretch, combined with a relatively low percent of bright pixels in 

its adventitial images, causes it to sit far outside the general trend shown in Figure 24 

(with this value, an exponential fit by Excel of the data shown in Figure 24 gives R2 = 

.6014; removing the point gives R2 = .7298). The extremely high stretch value 

experienced by this vessel is partially explained by the fact that the vessel experienced 

multiple unintentional overstretches due to program error during its zero load tests. 

These extra overstretches prior to pulling the vessel to failure would act to change the 

mechanical properties of the vessel (Bell et al., 2015). It is worth mentioning that S3_1 

may have experienced a similar effect, since it was exposed to multiple overstretch tests 

in order to achieve a higher subfailure overstretch. 

  



 

CHAPTER 5 
 
 

CONCLUSIONS 
 
 

This study has demonstrated the promise of CMP as a marker for collagen 

damage caused by mechanical injury. The percent of pixels in an image that fell above 

the threshold value (determined using a control sample from the same animal) proved 

an effective method of quantifying damage for isolated vessel studies such as this one. It 

is suggested that this metric be used in future studies.  

The results of this study suggest that axially oriented mechanical overstretch of 

cerebral blood vessels causes damage to fibrous, axially oriented collagen structures in 

the adventitia. It was observed that some connection exists between damage to these 

adventitial structures and layer failure of the IEL, implying that axial overstretch injuries 

to blood vessels due to TBI could lead to later issues related to IEL damage, such as 

aneurysm (Mizutani et al., 2001; Yamazoe et al., 1990).  

Limitations and Future Work 

While the percent bright pixels was shown to follow a generally upward trend as 

local stretch level increased, care should be taken in using any correlation with either of 

the stretch measures provided in this study outside of the context of an axial stretch 

test. The needle-to-needle measurement used in calculating λavg presents the advantage 
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of being straightforward to calculate from test data; however, due to the constraints 

imposed by mounting the vessel segments on needles, end effects do exist near the 

needles, so that needle-to-needle stretch is generally higher than the actual stretch 

values experienced by most of the vessel. Microsphere measurements are also 

problematic in that the microspheres are loosely caught in the fibers of the adventitia, 

presenting some uncertainty about whether the motion of microspheres is actually the 

same as the motion of the vessel wall. Further, in many cases, microsphere 

measurements can be inflated or deflated as events such as IEL layer failure occur 

during testing, causing microspheres to move rapidly, and sometimes leave the vessel 

entirely. Future work involving a more reliable measure of stretch will be invaluable to 

in vivo application of CMP staining. 

While percent bright pixels presents a promising metric for quantifying the level 

of overstretch to which a vessel was exposed, some limitations to the method do exist. 

Examination of the average brightness metric showed that it followed a bell curve or 

parabolic shape through the thickness of the vessel, so that images close to the inner 

and outer edges of the vessel wall had a much lower average brightness than those in 

the center. As only the peak value of the control curves was used in determining the 

percent bright pixels, it is probable that the method used in this study provides an 

underestimate in images far from the center of the stack. Since the peak value of the 

percent bright pixels generally did not occur at the center of the vessel wall in the 

damaged vessels, it is possible that use of control values by wall depth could drastically 

improve the sensitivity and/or consistency of this metric. 



67 

 

A more serious limitation to this method is the need for a control value in order 

to compare vessels across animals. While a control value is available in isolated vessel 

studies such as this one, no such value may be available in studies where vessels are 

imaged in vivo or in situ after an animal has been exposed to a head injury. Thus, while 

percent bright pixels is a valuable metric in initial studies such as this one, and may 

continue to be a valuable metric for comparing vessel injuries within a single animal, 

comparison across animals may require a more sophisticated metric for in vivo or in situ 

models. 

Implementation of the Hough transform code prepackaged with Matlab proved 

more difficult than anticipated. The code did not account for line orientation, and 

mapping lines back to the original images for validation proved too time consuming to 

attempt. Recent work has shown the usefulness of OrientationJ in providing orientation 

data for collagen fibers in blood vessels (Rezakhaniha et al., 2012). It is likely that use of 

this code on the images from this study would prove more effective than attempting to 

custom write code. 

While this study observed some relationship between IEL layer failure and CMP 

staining, no formal attempt at determining correlation or causation relationships 

between the two was made. Understanding of how IEL failure is related to overstretch 

events could have significant bearing on the relationship observed between TBI and 

secondary conditions such as stroke (Burke et al., 2013; Chen et al., 2011), especially 

considering that IEL damage has long been considered to play a role in the development 

of aneurysms  (Mizutani et al., 2001; Yamazoe et al., 1990). Further work should include 
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more detailed interrogation of the interaction between IEL failure and collagen damage. 

This could be as simple as high magnification confocal stacks of tears in the IEL from 

samples similar to those of this study.  



 

APPENDIX 
 

Matlab Code 

Masking Script: Demo.m 

% Demo of how masking procedure was performed 
clear; clc; close all 

  
% Stack together 'n' adjacent z-stack from left to right 
Istack = StackNStitch; 
%% 
% Mask this combined z-stack 
[Imasked, Mask] = CreateMask(Istack); 

  

% Enter vessel label for saving 
name = inputdlg('Enter Vessel Label'); % such as "M4_1" 
name = name{1}; 

  
% Save masked Image with label 
eval([name,'_masked = Imasked;']); 
eval(['save ',name,'_masked.mat ',name,'_masked']); 

  
% Save mask with label 
eval(['Mask_',name,' = Mask;']); 
eval(['save ','Mask_',name,'.mat Mask_',name]); 
%% 
%Save original stack: 
[rows cols slices] = size(Istack); 

  
eval(['mkdir ',name]); 
eval(['cd ',name]); 

  
for sliceNum = 1:slices 

     
    currentSlice = Istack(:,:,sliceNum); 
    if(sliceNum <2) 
        imwrite(currentSlice,[name,'.tif']); 
    else 
        imwrite(currentSlice,[name,'.tif'],'WriteMode','append'); 
    end 

     

     

end 
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cd .. 

 

 

 

Stack Analysis Script for Analyzing Metrics: stackScriptNew.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
%%% stackScriptNew runs stackAnalysis_ctrl to find metrics about each 

vessel 
%%% sample based upon its associated control. 
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
clear; clc; close all; 

  
ctrlBrightness_bright = 1375; 
ctrlBrightness_dim = 637; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"Bright" 

group:%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
C1FileName = 'C1_masked.mat'; 
C2FileName = 'C2_masked.mat'; 

  
M1_1FileName = 'M1_1_masked.mat'; 

  
M2_1FileName = 'M2_1_masked.mat'; 

  

M3_1FileName = 'M3_1_masked.mat'; 

  
M4_1FileName = 'M4_1_masked.mat'; 
M4_2FileName = 'M4_2_masked.mat'; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Perform Stack analysis 

%%%%%%%%%%%%%%%%%%%% 

  
%C1 
[C1AvgB, C1PkB,C1HotPix C1Pcts C1PeaksNorm, C1MStack,C1HStack]... 
    = stackAnalysis_ctrl(C1FileName,ctrlBrightness_bright); 
%C2 
[C2AvgB, C2PkB,C2HotPix C2Pcts C2PeaksNorm, C2MStack, C2HStack]... 
    = stackAnalysis_ctrl(C2FileName,ctrlBrightness_bright); 

  
%M1_1 
[M1_1AvgB, M1_1PkB,M1_1HotPix M1_1Pcts M1_1PeaksNorm, 

M1_1MStack,M1_1HStack]... 
    = stackAnalysis_ctrl(M1_1FileName,ctrlBrightness_bright); 

  
%M2_1 
[M2_1AvgB, M2_1PkB,M2_1HotPix M2_1Pcts M2_1PeaksNorm, 

M2_1MStack,M2_1HStack]... 
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    = stackAnalysis_ctrl(M2_1FileName,ctrlBrightness_bright); 

  
%M3_1 
[M3_1AvgB, M3_1PkB,M3_1HotPix M3_1Pcts M3_1PeaksNorm, M3_1MStack, 

M3_1HStack]... 
    = stackAnalysis_ctrl(M3_1FileName,ctrlBrightness_bright); 

  
%M4_1 
[M4_1AvgB, M4_1PkB,M4_1HotPix M4_1Pcts M4_1PeaksNorm, M4_1MStack, 

M4_1HStack]... 
    = stackAnalysis_ctrl(M4_1FileName,ctrlBrightness_bright); 
%M4_2 
[M4_2AvgB, M4_2PkB,M4_2HotPix M4_2Pcts M4_2PeaksNorm, M4_2MStack, 

M4_2HStack]... 
    = stackAnalysis_ctrl(M4_2FileName,ctrlBrightness_bright); 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"Dim" 

group:%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
C3FileName = 'C3_masked.mat'; 
C4FileName = 'C4_masked.mat'; 

  
M2_2FileName = 'M2_2_masked.mat'; 
M2_3FileName = 'M2_3_masked.mat'; 

  
M4_3FileName = 'M4_3_masked.mat'; 
M4_4FileName = 'M4_4_masked.mat'; 
M4_5FileName = 'M4_5_masked.mat'; 
M4_6FileName = 'M4_6_masked.mat'; 
M4_7FileName = 'M4_7_masked.mat'; 
M4_8FileName = 'M4_8_masked.mat'; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Perform Stack analysis 

%%%%%%%%%%%%%%%%%%%% 

  
%C3 
[C3AvgB, C3PkB,C3HotPix C3Pcts C3PeaksNorm, C3MStack, C3HStack]... 
    = stackAnalysis_ctrl(C3FileName,ctrlBrightness_dim); 
%C4 
[C4AvgB, C4PkB,C4HotPix C4Pcts C4PeaksNorm, C4MStack, C4HStack]... 
    = stackAnalysis_ctrl(C4FileName,ctrlBrightness_dim); 

  
%M2_2 
[M2_2AvgB, M2_2PkB,M2_2HotPix M2_2Pcts M2_2PeaksNorm, 

M2_2MStack,M2_2HStack]... 
    = stackAnalysis_ctrl(M2_2FileName,ctrlBrightness_dim); 
%M2_3 
[M2_3AvgB, M2_3PkB,M2_3HotPix M2_3Pcts M2_3PeaksNorm, M2_3MStack, 

M2_3HStack]... 
    = stackAnalysis_ctrl(M2_3FileName,ctrlBrightness_dim); 

  
%M4_3 
[M4_3AvgB, M4_3PkB,M4_3HotPix M4_3Pcts M4_3PeaksNorm, M4_3MStack, 

M4_3HStack]... 
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    = stackAnalysis_ctrl(M4_3FileName,ctrlBrightness_dim); 
%M4_4 
[M4_4AvgB, M4_4PkB,M4_4HotPix M4_4Pcts M4_4PeaksNorm, M4_4MStack, 

M4_4HStack]... 
    = stackAnalysis_ctrl(M4_4FileName,ctrlBrightness_dim); 
%M4_5 
[M4_5AvgB, M4_5PkB,M4_5HotPix M4_5Pcts M4_5PeaksNorm, M4_5MStack, 

M4_5HStack]... 
    = stackAnalysis_ctrl(M4_5FileName,ctrlBrightness_dim); 
%M4_6 
[M4_6AvgB, M4_6PkB,M4_6HotPix M4_6Pcts M4_6PeaksNorm, M4_6MStack, 

M4_6HStack]... 
    = stackAnalysis_ctrl(M4_6FileName,ctrlBrightness_dim); 
%M4_7 
[M4_7AvgB, M4_7PkB,M4_7HotPix M4_7Pcts M4_7PeaksNorm, M4_7MStack, 

M4_7HStack]... 
    = stackAnalysis_ctrl(M4_7FileName,ctrlBrightness_dim); 
%M4_8 
[M4_8AvgB, M4_8PkB,M4_8HotPix M4_8Pcts M4_8PeaksNorm, M4_8MStack, 

M4_8HStack]... 
    = stackAnalysis_ctrl(M4_8FileName,ctrlBrightness_dim); 

  

  
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Plots%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  
%BrightPixels: 
figure(1); 
clf; 
hold on; 

  
plot(C1Pcts,C1HotPix,'-ok'); 
plot(C2Pcts,C2HotPix,'-dk'); 
plot(C3Pcts,C3HotPix,'-sk'); 
plot(C4Pcts,C4HotPix,'-^k'); 
plot(M1_1Pcts,M1_1HotPix,'-oc'); 
plot(M2_1Pcts,M2_1HotPix,'-or'); 
plot(M2_2Pcts,M2_2HotPix,'-dr'); 
plot(M2_3Pcts,M2_3HotPix,'-sr'); 
plot(M3_1Pcts,M3_1HotPix,'-og'); 
plot(M4_1Pcts,M4_1HotPix,'-ob'); 
plot(M4_2Pcts,M4_2HotPix,'-db'); 
plot(M4_3Pcts,M4_3HotPix,'-sb'); 
plot(M4_4Pcts,M4_4HotPix,'-^b'); 
plot(M4_5Pcts,M4_5HotPix,'-*b'); 
plot(M4_6Pcts,M4_6HotPix,'-xb'); 
plot(M4_7Pcts,M4_7HotPix,'-pb'); 
plot(M4_8Pcts,M4_8HotPix,'-hb'); 
legend('C1','C2','C3','C4','M1_1','M2_1','M2_2','M2_3','M3_1','M4_1','M

4_2','M4_3','M4_4','M4_5','M4_6','M4_7','M4_8'); 

  
[maxBP(1,1) maxBPI(1,1)] = max(C1HotPix); 
[maxBP(2,1) maxBPI(2,1)] = max(C2HotPix); 
[maxBP(3,1) maxBPI(3,1)] = max(C3HotPix); 
[maxBP(4,1) maxBPI(4,1)] = max(C4HotPix); 
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[maxBP(5,1) maxBPI(5,1)] = max(M1_1HotPix); 
[maxBP(6,1) maxBPI(6,1)] = max(M2_1HotPix); 
[maxBP(7,1) maxBPI(7,1)] = max(M2_2HotPix); 
[maxBP(8,1) maxBPI(8,1)] = max(M2_3HotPix); 
[maxBP(9,1) maxBPI(9,1)] = max(M3_1HotPix); 
[maxBP(10,1) maxBPI(10,1)] = max(M4_1HotPix); 
[maxBP(11,1) maxBPI(11,1)] = max(M4_2HotPix); 
[maxBP(12,1) maxBPI(12,1)] = max(M4_3HotPix); 
[maxBP(13,1) maxBPI(13,1)] = max(M4_4HotPix); 
[maxBP(14,1) maxBPI(14,1)] = max(M4_5HotPix); 
[maxBP(15,1) maxBPI(15,1)] = max(M4_6HotPix); 
[maxBP(16,1) maxBPI(16,1)] = max(M4_7HotPix); 
[maxBP(17,1) maxBPI(17,1)] = max(M4_8HotPix); 

      

  

  
     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  %% save bright pixel images 

   
  C1numSlices = BPsaverMasked(C1HStack,[C1FileName(1:end-4) '_BP']); 
  C2numSlices = BPsaverMasked(C2HStack,[C2FileName(1:end-4) '_BP']); 
  C3numSlices = BPsaverMasked(C3HStack,[C3FileName(1:end-4) '_BP']); 
  C4numSlices = BPsaverMasked(C4HStack,[C4FileName(1:end-4) '_BP']); 

   
  M1_1numSlices = BPsaverMasked(M1_1HStack,[M1_1FileName(1:end-4) 

'_BP']); 

   
  M2_1numSlices = BPsaverMasked(M2_1HStack,[M2_1FileName(1:end-4) 

'_BP']); 
  M2_2numSlices = BPsaverMasked(M2_2HStack,[M2_2FileName(1:end-4) 

'_BP']); 
  M2_3numSlices = BPsaverMasked(M2_3HStack,[M2_3FileName(1:end-4) 

'_BP']); 

   
  M3_1numSlices = BPsaverMasked(M3_1HStack,[M3_1FileName(1:end-4) 

'_BP']); 

   
  M4_1numSlices = BPsaverMasked(M4_1HStack,[M4_1FileName(1:end-4) 

'_BP']); 
  M4_2numSlices = BPsaverMasked(M4_2HStack,[M4_2FileName(1:end-4) 

'_BP']); 
  M4_3numSlices = BPsaverMasked(M4_3HStack,[M4_3FileName(1:end-4) 

'_BP']); 
  M4_4numSlices = BPsaverMasked(M4_4HStack,[M4_4FileName(1:end-4) 

'_BP']); 
  M4_5numSlices = BPsaverMasked(M4_5HStack,[M4_5FileName(1:end-4) 

'_BP']); 
  M4_6numSlices = BPsaverMasked(M4_6HStack,[M4_6FileName(1:end-4) 

'_BP']); 
  M4_7numSlices = BPsaverMasked(M4_7HStack,[M4_7FileName(1:end-4) 

'_BP']); 
  M4_8numSlices = BPsaverMasked(M4_8HStack,[M4_8FileName(1:end-4) 

'_BP']); 
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Subfunctions: 

stackAnalysis_ctrl.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
%%% stackAnalysis takes as inputs the stack name, the start image, and 

the 
%%% end image for a particular stack of combined confocal images.  It 
%%% returns: the original stack as a structure, the cropped stack as a 
%%% structure, the number of peaks in the hough transform, the crop 

image, 
%%% and the crop columns.  It also returns the average and peak 

brightness 
%%% of each slice, and the number of "bright" pixels, and the hough and 
%%% bright pixel values normalized by the image size. 
%%% 
%%% 
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  
function [AvgBrightness, PeakBrightness, HotPix, Pcts, 

Peaks_norm,maskedStack,hotStack, NumPeaks, Peaks, Lines]... 
     = stackAnalysis_ctrl(maskedStackName, ctrlBright) 

  
houghThresh = .75; 
%get hough outputs 
[maskedStack, NumPeaks, Peaks, Lines] = ... 
    stack_hough(maskedStackName, houghThresh); 

  

%normalize hough outputs 
pixSize = 2.259; %[um/pixel] pixel size in micrometers 

  
ImArea = sum(sum(logical(maskedStack(:,:,1)))); %get image area 

[pixels] excluding masked areas 
ImArea_um = ImArea*pixSize^2; %get area in micrometers  

  
Peaks_norm = (NumPeaks/ImArea_um)'; %[peaks/um^2] the number of peaks 

per square micron 

  
%get the "percent through thickness" 
Ims =1:size(maskedStack,3); 

  
Pcts = ((Ims-Ims(1))/(Ims(end)-Ims(1))*100)'; 

  
%open a file to write to 
fileName = [maskedStackName(1:(end-4)), '_ctrl.csv']; 
FID = fopen(fileName,'w'); 

  
Headers = ['NormThickness, AvgBrightness, PeakBrightness, PctBrightPix, 

Peaks_norm\n']; 
fprintf(FID,Headers); 
%get average, peak brightness, and number of "bright" pixels 
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for i = 1:size(maskedStack,3) 

    
    AvgBrightness(i,1) = maskedMean((maskedStack(:,:,i))); 
    PeakBrightness(i,1) = max(max(maskedStack(:,:,i))); 
    [HotPix(i,1) hotStack(:,:,i)] = 

hotPixPct_ctrl(maskedStack(:,:,i),2.0,ctrlBright); 
    currentLine = [num2str(Pcts(i)) ', ' num2str(AvgBrightness(i,1)) ', 

'... 
        num2str(PeakBrightness(i,1)) ', ' num2str(HotPix(i,1)) ', ' 

num2str(Peaks_norm(i,1)) '\n']; 
    fprintf(FID,currentLine); 

     
end 

  
fclose(FID); 
end 

 

stack_hough.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
%%% stack_hough takes as input the name of a series of grayscale tif 

images per the 
%%% convention used in stack_import, along with the start and stop 

indices. 
%%% Unlike older versions, this code does not use cropping, but uses 

masked 
%%% images as given out by Demo.m, using StackNStitch. 
%%% The function gives as outputs the stack of 
%%%  images as they were imported, the cropped stack, the original 

stack as 
%%%  imported, the number of peaks in the hough transform, the peaks, 

the 
%%%  lines associated with the peaks, and the image that shows how the 
%%%  vessel images were cropped. 
%%% 
%%% 
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  
function [maskedStack numPeaks peaks lines] = ... 
    stack_hough(maskedStackName,Thresh) 

  

isBW = true; 

  

  
%first, import the stack of images: 
maskedStack = cell2mat(struct2cell(load(maskedStackName))); %get the 

output of the mat file as a single array 

  

  
%now get the hough transform information for each image: 
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for imIndex = 1:size(maskedStack,3) 
    %first do edge detection 
    edgeStack(imIndex).img = edge(maskedStack(:,:,imIndex),'canny'); 

     
    [numPeaks(imIndex) peaks(imIndex).data lines(imIndex).data]... 
        = hough_vessel(edgeStack(imIndex).img,Thresh,isBW); 

     
    fprintf('image %d\n',imIndex); 

     
end 

 

 

hough_vessel.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
%%% hough_vessel uses the hough function to find straight line segments 

in 
%%% a vessel image.  It takes as input a grayscale, binary, or color 

image. 
%%%  It returns as outputs the number of peaks in the hough transform 

(that 
%%%  is, the number of lines found in the image), the peak locations, 

and  
%%%  the line endpoints as output by the houghlines function 
%%% 
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  

function [numPeaks peaks lines] = 

hough_vessel(vessel_image,Thresh,isBW) 
if( nargin<3) 
    Thresh = .75; 
    isBW = false; 
end 
if isBW ==false 
    image = rgb2gray(vessel_image); 
else 
    image = vessel_image; 
end 
%Performs a Hough analysis to find the number of lines in two images, a 
%control and a damaged 

  

%Perform hough transform on the images 

  
[H, T, R] = hough(image); 

  
%find the peaks in the hough transform 
peaks = houghpeaks(H,10000,'Threshold',Thresh*max(H(:))); 
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lines = []; 

  
%if there are lines to be found in the control image, find them... 
if(~isempty(peaks)) 

  
    lines = houghlines(image,T,R,peaks,'FillGap',5,'MinLength',7); 

  
end 

  
numPeaks = length(lines); 

 

 

maskedMean.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
%%% maskedMean takes as an input a greyscale image, and outputs the 

mean of all 
%%% non-zero pixels 
%%% 
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  
function result = maskedMean(maskedIm) 

  
[nRows nCols ~] = size(maskedIm); 
vals = uint16([]); 
for r = 1:nRows 
    for c = 1:nCols 

         
        if(uint16(maskedIm(r,c)>0)) 
            vals(end+1) = uint16(maskedIm(r,c)); 

             

        end 

         
    end 
end 

  
result = mean(vals); 

  

  

  
end 

 

hotPixPct_ctrl.m 



78 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
%%%  hotPixPct_ctrl takes as input an image, and returns the percentage 

of the 
%%%  pixels in the image that are deemed "hot" checking if they are 

more 
%%%  than a user input factor above a control pixel brightness 
%%% 
%%% 
%%% 
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  
function [pctHot,hotPixImg] = hotPixPct_ctrl(img,factor,control) 
%get the image size to begin with 
[imRows imCols] = size(img); 
hotPixImg = uint16(zeros(imRows,imCols)); 
numPix = sum(sum(logical(img))); 

  
%look at each pixel, check if its brightness is within the margin 

  
hotPixNum = 0; 

  
for r =1:imRows 
    for c = 1:imCols 
        currentBrightness = img(r,c); 
        if(currentBrightness>(factor*double(control))) 
            hotPixNum = hotPixNum+1; 
            hotPixImg(r,c) = img(r,c); 
        end          
    end 
end 

  
pctHot = hotPixNum/numPix*100; 

 

 

StackNStitch.m 

function Istitch = StackNStitch 
%%  
% This function reads in 'n' sequential z-stacks and stitches them side 

by 
% side (left to right). For each z-stack, the code places higher 

integer 
% images on top of lower integer images 
%  
% Assumptions 
% 1) each stack has the same number of images 
% 2) stacks are read in left-most first 
% 3) each z-stack is stitched toward adventitia 

  
%% 
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% Determine number of stacks 
val = inputdlg('How many adjacent stacks do you want to stitch?'); 
n_stacks = str2double(val{1}); 

  
Istitch = []; % initialize stitched z-stacks 
% For all n stacks 
for i = 1:n_stacks 
    % read in z-stack 
    if i == 1 
        [filename,pathname] = uigetfile('.tif','MultiSelect','On','Pick 

all images in left-most stack'); 
        n_slices = length(filename); 
    else 
        [filename,pathname] = 

uigetfile([pathname,'*.tif'],'MultiSelect','On',['Pick all images in 

stack ',num2str(i),]); 
        n_slices2 = length(filename); 
        if n_slices2 ~= n_slices 
            error('number of slices in stack has changed') 
        end 
    end 
    % complile z-stack 
    Istack = []; % initialize z-stack 
    for j = 1:n_slices 
        I = imread([pathname,filename{j}]); 
        Istack = cat(3,Istack,I); % adds images toward adventitia 
    end 
    % stitch adjacent stack 
    Istitch = cat(2,Istitch,Istack); 
end 

 

CreateMask.m 

function [Imasked, Mask] = CreateMask(I) 
% This function reads in a 2D or 3D grayscale image and walks the user 
% through a series of steps to create a mask for that image. The first 

step 
% is to pick a threshold 
% 
% Inputs 
% 1) I: a 2D or 3D array of uint12 integers (.mat) 
% 
% Outputs 
% 1) Mask: a logical of the same size as I. Ones represent the pixels 
% that should be masked out 
% 2) Imasked: a matrix of the same size as I except masked values have 

been set = 0 
% 

  
% Convert to double 
I = double(I); 

  
% Determine which slice in array is brightest 
intensity = zeros(1,size(I,3)); 
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for k = 1:length(intensity) 
    intensity(k) = sum(sum(I(:,:,k))); 
end 
max_int = max(intensity); 
k_max = find(intensity==max_int,1,'first'); 

  
% Select threshold of background 
Slice = I(:,:,k_max); 
Slice_thresh = Slice; 
hist(Slice_thresh(:),100) 
title('Select point such that vertical line divides background pixels') 
xlabel('Pixel intensity') 
ylabel('Frequency') 
[thresh,dummy] = ginput(1); close all 

  
% Set all background pixels equal to zero 
Slice_thresh(Slice_thresh<thresh) = 1; 
Slice_thresh(Slice_thresh>=thresh) = 0; 
Mask1 = logical(Slice_thresh); 

  
% Overlay slice with background 
Slice_mask1 = Slice; Slice_mask1(Mask1) = 0; 
SliceRGB = cat(3,Slice_mask1,Slice_mask1,Slice_mask1); 
SliceRGB(Mask1) = 2^12-1; 

  

% Allow user to outline additional bodies to add to mask 
figure(1) 
subplot(2,1,2) 
imshow(uint16(Slice*2^4)); 
title('Original Image') 
subplot(2,1,1) 
imshow(uint16(SliceRGB*2^4)); 
title('Draw polygon to add to mask; double click; repeat; close fig 

when done') 
set(gcf,'units','normalized','outerposition',[0 0 1 1]) 
Mask2 = zeros(size(Slice)); 
set(gcf,'currentchar','c')         % set a dummy character 
while get(gcf,'currentchar')=='c'  % which gets changed when key is 

pressed 
    BWi = roipoly; 
    if ~isnan(BWi) 
        Mask2 = Mask2 + double(BWi); 
    end 
end 
close all 

  
% Combine both masks 
Mask = double(Mask1) + Mask2; 
Mask(Mask>0) = 1; 
Mask = logical(Mask); 

  
% Add to border of mask (because difficult to select polygon at edge) 
thickness = 10; % vary number of pixels to fill around border 
top = Mask(thickness,:) == 1; % gaps in mask at top 
Mask(1:thickness-1,top) = 1; 
bottom = Mask(end-thickness,:) == 1; % gaps in mask at bottom 
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Mask(end-thickness:end,bottom) = 1; 
left = Mask(:,thickness) == 1; % gaps in mask on left edge 
Mask(left,1:thickness) = 1; 
right = Mask(:,end-thickness) == 1; % gaps in mask on right edge 
Mask(right,end-thickness:end) = 1; 

     
% Display mask 
Slice_mask = Slice; Slice_mask(Mask) = 0; 
SliceRGB = cat(3,Slice_mask,Slice_mask,Slice_mask); 
SliceRGB(Mask) = 2^12-1; 
figure(2) 
subplot(2,1,2) 
imshow(uint16(Slice*2^4)); 
title('Original Image') 
subplot(2,1,1) 
imshow(uint16(SliceRGB*2^4)); 
title('Masked Image') 

  
% Mask original matrix 
Imasked = I; 
for k = 1:size(I,3) 
    slice_masked = Imasked(:,:,k); 
    slice_masked(Mask) = 0; 
    Imasked(:,:,k) = slice_masked; 
end 

 

BPSaverMasked.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
%%% BPsaverMasked takes as an input a stack of masked images in the 

form of 
%%% a 3D matrix, as well as a stack of images showing the bright pixels 
%%% from the masked images. The function creates a single RGB image 

stack 
%%% with original images in grayscale, and the bright pixels in the 

image 
%%% highlighted in red. 
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  
function sliceNum = BPsaverMasked(maskedStack,saveName) 

  

  

  
%create output imgs: 
for sliceNum = 1:size(maskedStack,3) 

     
    if(sliceNum<2) 
        imwrite(maskedStack(:,:,sliceNum),[saveName '.tif']); 
    else 
        imwrite(maskedStack(:,:,sliceNum),[saveName 
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'.tif'],'WriteMode','append'); 
    end 

     
end 
% imshow(outputImg*2^4); 

  

  

  
end 
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