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ABSTRACT 

Vascular mechanics plays a key role in both health and disease. Therefore, the 

mechanical properties of vessels have been under study for over a century. This thesis 

reports research with two computational models designed to better understand vessel 

mechanics in complex loading scenarios. 

Numerous methodologies have been utilized to evaluate the mechanical behavior 

of blood vessels, including distending arterial rings to investigate circumferential 

behavior, a configuration commonly used in wire myography. We previously used this 

configuration to experimentally characterize microstructural damage in cerebral arteries 

that may transpire in clinical procedures and due to trauma. However, due to the 

complexity of loading, we were not able to quantify strains throughout the vessel 

experimentally. As a consequence, we were not able to relate microstructural damage 

with vessel strains in all parts of the vessel. Thus, the aim of the current investigation was 

to quantify strains throughout the arterial ring by using a computational model. To 

achieve our goal, we created a finite element (FE) model of the experiment using FEBio. 

In the model, we observed complex vessel strain distributions along the circumference. 

Most vessel strains were observed to vary considerably through the wall thickness in 

regions near the needles, but circumferential strains remained largely constant throughout 

the ring. 

In this research, another computational model was constructed to understand the 
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significance of perfusion in cerebral arteries’ strain rate dependence. Although many 

investigators have attempted to characterize the strain rate dependence of arteries 

experimentally, there has been disagreement in the results. In our previous investigation, 

our lab observed strain rate dependence in dynamically-loaded middle cerebral arteries 

(MCAs) in rats. We hypothesized that perfusion was at least partly responsible for the 

observed behavior and designed a computational model using LS-DYNA to test our 

hypothesis. As expected, we observed a contribution of perfusion to strain rate 

dependence in the circumferential and the radial directions. However, it was not 

sufficient to influence experimentally witnessed axial strain rate dependence. 
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CHAPTER 1 

INTRODUCTION 

1.1 Consequences of traumatic brain injury 

According to the Centers for Disease Control and Prevention (CDC), traumatic 

brain injury (TBI) is a leading cause of death and disability in the United States. Thirty 

percent of all injury deaths can be attributed to TBI [1]. Survivors of TBI can suffer from 

its effects for an hour, a few days, or even for the rest of their lives. TBI impairs not only 

thinking and memory, but also sensations like vision and hearing. Patients suffering from 

TBI are also susceptible to personality changes and depression [2]. According to the 

CDC, these issues not only affect individuals, but can also cause permanent impacts on 

families and communities. 

1.2 Vascular mechanics in TBI 

The grave consequences of TBI are often a result of damaged vasculature during 

the injury, but little is known about the mechanics of vessels during a TBI or about a 

vessel’s response to such loading. It is well-known that overstretching arteries alters 

vessel mechanics and disrupts their functions [3]-[7], but the understanding of underlying 

structural alterations is incomplete. Blood vessels’ strain rate dependence is another 

unresolved issue. Since TBI involves stretching arteries at high speeds, whether or not 
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they are strain rate dependent is another debated issue. A few investigators have tried to 

answer this question, but there is a lack of conclusive work [8]-[17]. Resolving these 

issues will help with more effiecient TBI diagnoses and will also lead to better safety 

equipment design. Surgical procedures like neuro angioplasty, in which blood vessels are 

distended beyond their physiological capacity, will also benefit from an improved 

understanding of vascular mechanics and damage. 

1.3 Isolated blood vessel experiments 

Experiments to characterize vascular mechanics are commonly performed on 

isolated blood vessels from human and animal brains. In most of these experiments, the 

vessel segments are either clamped at the ends or mounted on hypodermic needles. 

Arterial segments are then stretched in the axial and/or circumferential directions. Some 

experiments are carried out on blood vessels perfused with a fluid to maintain pressure 

inside the artery segment during testing, and some tests have been performed without any 

perfusion. Imaging techniques are commonly used to track deformations, so as to 

characterize arteries’ stress-strain behavior. 

While isolated vessel experiments have improved our understanding of vascular 

mechanics, these methods also have some limitations. For example, only average stresses 

and strains of vessel segments can be conveniently calculated by the typical experiments. 

It is thus difficult to characterize phenomena associated with small regions of the vessel, 

such as the generation of stress waves in high-rate testing. These methods are also limited 

by the materials and methods that can be used. For example, fiduciary markers for stretch 

evaluation, like microspheres, can only be placed on the outer surface of the vessel and 
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therefore cannot be used to quantify strains across the vessel wall thickness. 

1.4 Computational modeling of the experiments 

Computational modeling of the isolated vessel experiments is an effective strategy 

for overcoming limitations with experimental approaches. It is comparatively easy to 

devise the necessary boundary conditions and loads in a computational model; due to its 

ability to represent a vessel segment as a cluster of tiny elements, the mechanics of any 

part of the vessel can be computed very efficiently. Thus, a validated model can not only 

resolve limitations of the experimental approach, but can also provide additional 

information not otherwise available in the experiments. As a consequence, computational 

models are commonly coupled with experimental approaches. 

1.5 Objective 

The aim of the current study was to use computational models to more fully 

interpret isolated vessel experiments previously performed and investigated in our 

laboratory. Two models were created to explore two different experiments. In the first, 

middle cerebral arterial (MCA) rings from sheep were circumferentially stretched at a 

quasi-static speed using a modified wire myography technique. The purpose of this study 

and testing configuration was to understand the structural mechanics and damage of 

circumferentially overstretched arteries. In the previous experiments, a newly-created 

collagen hybridizing peptide (CHP) was utilized to identify arterial collagen damage 

during the circumferential stretch. However, since the full ring could not be visualized 

with the single camera used, we were not able to determine deformations along the entire 
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circumference or through the vessel wall thickness, in order to correlate the vessel strains 

with observed collagen unfolding. While wire myography is commonly used by vascular 

biologist to study vessel function, little is understood about the mechanics of this testing 

approach [18]-[23]. Thus, we created a computational model of the experiment to 

characterize the mechanics associated with a unique loading scenario. 

The second finite element model simulated axial stretching of rats’ MCA. In one 

of our previous experiments, we observed arteries’ strain rate dependence above strain 

rates of 500 s-1. We hypothesized that perfusion might be partly or wholly responsible for 

this behavior, owing to the inertia of water. The objective of this study was to investigate 

this hypothesis.  



CHAPTER 2 

COMPUTATIONAL CHARACTERIZATION OF BLOOD VESSEL 

 STRAIN DURING CIRCUMFERENTIAL STRETCHING  

BY WIRE MYOGRAPHY 

2.1 Background 

Blood vessel mechanics play a vital role in both health and disease. Consequently, 

vessels’ mechanical properties have been under study for over a century. A variety of 

approaches have been utilized to define blood vessel properties, including both wire and 

pressure myography. 

Wire myography is mostly used to characterize the active behavior of blood 

vessels through smooth muscle cells. This procedure involves intubating an arterial ring 

with hypodermic needles or wires. As a result, vessel rings subjected to wire myography 

exhibit complex strain distributions in the region around the needles. Through our 

literature study about wire myography, we concluded that vascular biologists use this 

method without considering the complex strain distributions in the vessel ring [18]-[23]. 

Conversely, in pressure myography, vessels are pressurized to an in-vivo state through 

perfusion, and the vessels’ active response is studied. Due to the absence of wires or 

needles, pressure myography lacks the inadequacies of wire myography. However, using 

this method during passive response experiments, it is challenging to achieve sufficiently
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high pressures to overstretch the vessel circumferentially. Previously, a passive response 

experiment was conducted in our lab to identify cerebral artery microstructural damage 

related to traumatic brain injury (TBI), as well as clinical procedures. It was not possible 

to use pressure myography, as explained above, so wire myography was utilized for that 

investigation.  

In the experiments, two hypodermic needles were inserted into a sheep’s MCA 

ring (Figure 2.1). The ring was circumferentially distended from an unloaded state to 

failure at a rate of 0.1 mm/s by separating the needles quasi-statically. Strains between 

the needles were computed by tracking microspheres placed on the outer surface of the 

vessel. Collagen unfolding due to the overstretch was demonstrated using a recently-

developed collagen hybridizing peptide (CHP). One of the objectives of this experimental 

study was to correlate vessel strains with collagen damage. However, strains near the 

needles are complicated and differ through the vessel wall. Some portions of the vessel 

also move perpendicular to the imaging plane, while sliding around the needles. As a 

result, strains in these regions cannot be computed using microspheres alone. The goal of 

the computational investigation was to quantify strains throughout the vessel ring by 

accounting for vessel mechanics associated with wire myography.  

2.2 Methods 

We chose a computational modeling approach to map strain distributions in vessel 

rings during wire myography. The FEBio software suite was used to create the model. 

The vessel ring was modeled as a cylinder, with symmetry utilized to reduce 

computational time. Loading was applied through a two-step process, first inducing  
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Figure 2.1 Experimental image of vessel ring cannulating needles and the vessel stretched 
circumferentially
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residual strain in the vessel ring before stretching it circumferentially. The model was 

validated by relating nodal displacements and width reductions to comparable 

experimentally-measured values. Green-Lagrange strains of elements reported in the 

local cylindrical coordinate system by FEBio were plotted along vessel circumference 

and thickness to study strain distributions. 

2.2.1 Model geometry 

The first step in creating a finite element model is to construct accurate geometry. 

The vessel ring was assumed to be a circular tube and was modeled with octant (1/8th) 

symmetry, such that its geometry was characterized as a quarter of an annular portion of 

the ring, and half its width (Figure 2.2). Experimentally-measured dimensions of a typical 

sheep MCA ring (outer diameter: 1.03 mm; wall thickness: 0.13 mm; width: 0.91 mm) 

were used to construct the geometry. The vessel ring was modeled as a homogeneous 

body without any distinct layers. It was initially modeled as a rectangular strip (Figure 

2.3), which was then rotated into a quarter circle, to induce residual strain in the ring 

(Figure 2.4). With the application of symmetry, only one needle of half-length was 

modeled, rather than two full-length needles. The experimental setup used in the previous 

investigation (Figure 2.5) was measured to determine other geometry requirements of the 

computational model, such as the needle dimensions and the initial distance between the 

needles. Excluded from the model geometry were parts of the experimental setup not in 

contact with the vessel ring and not related to load and boundary conditions on the vessel 

ring. Thus, only needles (size: 28 gauge) in the experimental setup were included in the 

model geometry. Geometry was constructed in PreView 1.19 (University of Utah, UT). 
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Figure 2.2 Application of octant symmetry to vessel ring and needles; (a) complete 
geometry (highlighted portion in red was part of final geometry); (b) geometry with 

octant symmetry 

Figure 2.3 Initial geometry 

Figure 2.4 Final geometry 
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Figure 2.5. Experimental setup for circumferentially stretching the vessel ring, including 
X-Y stage, load cell, blocks for mounting needles, and voice coil actuator
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2.2.2 Mesh 

PreView 1.19 was used for mesh generation and for the remaining preprocessing 

tasks, including the application of boundary conditions, contacts, and loads. A vessel ring 

was meshed using 8,400 linear hexahedral elements (Figure 2.6). Three element layers 

across the vessel wall thickness were formed, so as to observe strain distribution through 

the thickness. The needle was meshed with 65 linear hexahedral elements. Reasonable 

values of skewness (0), Jacobian (1), aspect ratio (10.98), and warpage angle (0) were 

maintained while meshing. The characteristic length of elements in the vessel ring was 

4059 µm. The meshed model is as shown in Figure 2.7.  

2.2.3 Boundary conditions and contacts 

Realistic boundary conditions and contacts were established to produce reliable 

results in the model (Figure 2.8). Octant symmetry boundary conditions were applied on 

the symmetry faces of the vessel ring, with details as shown in Figure 2.8. Rigid contact 

was created between the top surface of the needle and Symmetry Plane 2, preventing the 

vessel ring from slipping off the needle. A frictionless sliding contact was established 

between the top surface of the needle and the inner surface of the vessel ring, allowing 

the vessel ring to slide on the needle as it was stretched. A fixed contact was established 

between needle and the vessel ring, such that nodes of the needle and vessel ring were 

tied in X- and Y-directions. This contact ensured that the vessel ring didn’t slip off the 

needle. However, the vessel ring was allowed to slide over the needle in an axial 

direction. All boundary conditions and contacts depicted in Figure 2.8 were maintained 

during both steps of the simulation (i.e., the residual stress generation step and the
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Figure 2.6 Vessel ring mesh 

Figure 2.7 Model mesh 
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Figure 2.8 Boundary conditions to enforce octant symmetry and contact details 

Fixed contact 
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circumferential stretching step). For the first step, the needle was constrained in all 

degrees of freedom (DOF) except for rotation about the Z-axis, and for the second step, 

the needle was restricted in all DOF except for translation in the Y-direction.  

2.2.4 Material model selection and verification 

Having a wide variety of biological material models was the main reason to 

choose FEBio for constructing this model. Owing to the anisotropic nonlinear nature of 

blood vessel tissue, the transversely isotropic Veronda-Westmann model was used for the 

vessel ring. It is an uncoupled material model with the following strain energy function 

[24], (Equation 1) 

(1) 

where Ĩ1 and Ĩ2 are the deviatoric invariants of right Cauchy-Green tensor and J is the 

Jacobian. C1 and C2 are material parameters which were established by fitting the 

material model to experimental force vs. needle displacement data (Figure 2.9). The 

parameter optimization function in FEBio was used for this purpose. Apart from C1 and 

C2, bulk modulus k for the material was also established (C1 = 0.3, C2 = 0.9, k= 4.99). 

The needle was modeled as a rigid body, as we were not interested in any deformations 

of the needle. 

We compared the theoretically-calculated Cauchy stress using Equations 2, 3, 4, 

and 5 with model prediction to verify the material model [24]. 

σ = pI + dev σ’  (2) 

σ’ = (2 / J) [ (W1 + I1 W2) b’ – W2 b’2 ] (3) 

W1 = C1C2 ec2(I1 -3) (4)
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Figure 2.9. Parameter optimization curve for fitting the transversely isotropic Veronda-
Westmann material model to experimental data 
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W2 = - (C1C2) / 2 (5) 

where b’ is given by J-2/3 b. b is right Cauchy Green deformation tensor given by FTF. 

Since stresses generated in the model were complex, theoretically calculating 

these stresses was difficult. Thus, we created a simplified single element model and 

compared model predictions with theoretical calculations. This simple model included a 

rectangular block (width: 1 mm, length: 1 mm, thickness: 0.13367 mm) with boundary 

conditions as shown in Figure 2.10, and stretched in the X-direction. We compared the 

model prediction of Cauchy stresses and theoretically-calculated stresses in the X-

direction (Figure 2.11), and found that both matched with an average absolute error of 

2.8%. 

2.2.5 Loading 

To create a realistic representation of the blood vessel, we induced uniform 

circumferential residual strain in the vessel ring before stretching. Therefore, two steps of 

loading were applied. The presence of residual strain in blood vessels has been observed 

in vessels’ no-load states (Figure 2.12) [25]. The opening angle ‘θ’ is the measure of 

residual strain (Figure 2.12 b). While there was no reference in the literature about sheep 

MCA opening angles, we were able to find opening angles for human cerebral arteries. 

The opening angles for human cerebral arteries were witnessed to be variable and have 

been reported to vary in the range of 17–180 Deg. [26]. In some cases, angles more than 

180 Deg. were also witnessed. Thus, for simplifying the model, we assumed, θ = 180 

Deg. and modeled stress-free vessel ring as a flat rectangular strip (Figure 2.13). During 

the first step, the needle was subjected to 90 Deg. of rotation in the Z-direction to induce 
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Figure 2.10 Distribution of Cauchy stress in X direction for material verification model 

 

        

Figure 2.11 Model verification comparison plot 
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Figure 2.12 Opening angle θ as a measure of residual strain in blood vessel  
adapted from [27]
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Figure 2.13 Loading step 1 (legend represents Green-Lagrange strain in Y-direction), (a) 
vessel ring stress-free condition, (b) vessel ring in unloaded condition residual strain in 

the vessel ring (Figure 2.13 b) 

 needle 

 vessel ring 

 vessel ring 

 needle 

(a) 

(b)
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residual strain. In the second step, the ring was subjected to circumferential stretch quasi-

statically, similar to the experiment itself, by applying 0.9 mm displacement in the Y-

direction to the needle (Figure 2.14). As the model was created with symmetry about the 

XZ- plane, 0.9 mm displacement represents a total needle displacement of 1.8 mm.   

 

2.2.6 Convergence study  

 A convergence study was carried out to ensure proper mesh density. Because our 

chief objective was to observe hoop strain distribution along the circumference of the 

ring, the mesh size along the circumference was refined in the convergence study. The 

element size along the other dimensions of the vessel ring was adjusted such that a 

reasonable aspect ratio (<10) of elements was maintained. Peculiar strain distribution was 

observed in the portion of the vessel ring around the needle (Figure 2.15 a). Thus, 

average strains in that region (Figure 2.15 b) were measured for each mesh refinement, 

and were plotted against the number of elements (Figure 2.16). We found that results of 

the model mostly converged at a mesh size with 8465 elements.  

 

2.2.7 Model validation 

 We validated the model with experimental data using two methods. First, 

experimentally-measured width reduction of the ring specimen during needle 

displacement was compared with model predictions of width reduction at Symmetry 

Plane 3 (Figure 2.17). The width was measured at the top half of the circular ring. It was 

observed that experimental results matched with model predictions with an absolute 

average error of 0.94%.  Second, the experimentally-measured distances between two  
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Figure 2.14 Loading step 2 - circumferential stretch as a result of 1.8 mm needle 
displacement

 vessel ring 

 needle 
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Figure 2.15 Element selection for convergence study (a) hoop strain distribution along 
the circumference in the vessel ring portion near the needle, (b) elements selected for 

convergence study 
 

 

(a) 
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Figure 2.16 Convergence plots - average strain vs. number of elements in the 
model  (a) hoop, (b) hoop zoomed in, (c) radial, (d) radial zoomed in, (e) axial 

strain, (f) axial zoomed in, (g) radial-hoop shear, (h) radial-hoop shear zoomed in, 
(i) hoop-axial shear, (j) hoop-axial shear zoomed in, (k) radial-axial shear, and (l) 

radial-axial shear zoomed in 
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Figure 2.16 continued 
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Figure 2.16 continued 
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Figure 2.16 continued      
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Figure 2.16 continued    
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Figure 2.16 continued 
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Figure 2.17 Results of model validation method 1 (a) Model prediction of width at 
Symmetry Plane 3, (b) Experimental result of width, (c) Comparison of model 

predictions of width reduction and experimental results 

(a) 

(b)
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Figure 2.17 continued 
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microspheres and needles were compared with model predictions of the Y-direction 

distance between the needle and the two of the vessel nodes with the same initial position 

as those of the microspheres in the experiment (Figure 2.18). Trends in both the model 

and experimental results were similar. However, experimental results exhibited a small 

flat region initially. The reason for this could be the irregular shape of the vessel ring 

(i.e., not perfectly cylindrical), resulting in initial needle displacement when there was 

very small microsphere movement. We found that experimental results and model 

predictions varied with an absolute average error of 18.25% and 25.57% respectively for 

two nodes. The reason for this error might be our assumption about the homogeneity of 

the various layers of vessel material, whereas a blood vessel has three different layers 

(i.e., media, intima, and adventitia), which have different mechanical properties.  We 

decided that this error was acceptable and proceeded to postprocessing. 

 

2.3 Results 

The Green-Lagrange strains were recorded (Figure 2.19) and plotted to 

understand strain distributions in the vessel ring (Figure 2.20). As expected, model-

predicted hoop strains were the largest of all strains. We found that hoop strain was 

highest in the outer layer and was lowest in the inner layer, particularly where the vessel 

was adjacent to the needle (Figure 2.20 b). Hoop strain in the outer layer reduced along 

the circumference of the ring, whereas in the inner layer, hoop strain increased along the 

circumference. Thus, hoop strain distribution along the circumference of the vessel ring 

in the outer and inner layers displayed exactly opposite trends. Hoop strain distribution 

along the circumference of the middle layer was found to be relatively constant, with  
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Figure 2.18 Results of model validation method 2 (a) Model prediction of Y-direction 

distance between node and needle, (b) Experimental image for calculating distance 
between needle and microsphere, (c) Comparison of model predictions of distance 

between node and needle and experimental results of distance between microsphere and 
needle 
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Figure 2.18 continued 
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Figure 2.19 Hoop strain distribution along circumference of vessel ring and vessel wall 
thickness on Symmetry Plane 3 
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Figure 2.20 Strain distributions on Symmetry Plane 3 along circumference from 
Symmetry Plane 2 (Figure 2.17) as a function of thickness for needle  

displacement of 1.8 mm (a) radial, (b) hoop, (c) axial,  
(d) radial-hoop shear, (e) hoop-axial shear,

(f) radial-axial shear
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Figure 2.20 continued 

 

 

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0
0 0.2 0.4 0.6 0.8

A
xi

al
 s

tr
ai

n

Distance from symmetry plane 2(mm)

inner

middle

outer

(c)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.2 0.4 0.6 0.8

rθ
sh

ea
r 

st
ra

in

Distance from symmetry plane 2(mm)

inner

middle

outer

(d)



37 

 

 

 

 

 

Figure 2.20 continued 
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little apparent influence from the model (Figure 2.20 b). 

Unlike hoop strain distribution, strain distributions in the other directions showed 

the same trend along the circumference in all three layers (i.e. radial strains, axial strains, 

radial-hoop shear strains, hoop-axial shear strains, and radial-axial shear strains; Figures 

2.20, 2.21, and 2.22). In all three layers, strain distributions varied along the 

circumference in a similar manner. The radial strain was observed to be compressive. It 

was lowest in the inner layer and highest in an outer layer, near the needle (Figure 2.20 

a). On the other hand, the radial-hoop shear strain was greatest in the middle layer and 

lowest in the outer layer in the region of the vessel ring near the needle (2.20 d). Radial, 

hoop, and radial-hoop shear strain distributions were observed to be relatively constant 

along the width of the vessel ring (Figure 2.20 a, b, d). Axial, hoop-axial shear and radial-

axial shear strains (as shown in Figure 2.20 c, e, and f) were also uniform along the width 

for the most part. However, these strains had peculiar distribution along the width of the 

vessel ring in the region marked as Region A (Figure 2.21 c, e, f). 

Axial, axial-hoop shear, and radial-axial shear strains in Region A are shown in 

Figure 2.22. The axial strain was approximately constant through the thickness of the 

vessel (Figure 2.20 c), except in Region A (Figure 2.21 c), i.e., the area around the 

needle, near its end surface. In that region, the axial strain was highest in the inner layer 

and lowest in the outer layer (Figure 2.21 a). Hoop-axial and radial-axial shear strains 

were insignificant almost everywhere in the vessel ring (Figure 2.20 e, f) except in 

Region A (Figure 2.21 e, f). The hoop-axial shear strain was constant in all three layers 

(Figure 2.20 e), except in Region A (Figure 2.21 e). In Region A, it was highest in the 

inner layer and lowest in the outer layer (Figure 2.22 b). Radial-axial shear strain showed  
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Figure 2.21 Strain distributions along width of vessel ring (inner layer) 
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Figure 2.21 continued 
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Figure 2.22 Strain distribution in Region A (Figure 2.20 c, e, f) along circumference as a 
function of thickness for needle displacement of 1.8 mm (a) Axial strain distribution, (b) 

Hoop-axial shear strain distribution, (c) Radial axial strain distribution 
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Figure 2.22 continued 
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trend along the circumference of the vessel in the region around the needle; it briefly 

increased before becoming uniform (Figure 2.20 f). Conversely, radial-axial shear strain 

distribution in Region A (Figure 2.21 f) showed an increasing trend along the 

circumference of the vessel in the region around the needle (Figure 2.22 c). 

 

2.4 Discussion 

In this investigation, we computationally modeled wire myography and achieved 

the primary objective of this model, i.e., to quantify strains in the region around the 

needles and through vessel wall thickness. The model demonstrated trends in strain 

distribution along the ring circumference and across the vessel wall thickness, furthering 

our understanding of experimentally-observed collagen damage. 

Since collagen fibers are oriented circumferentially in the medial layer of the 

blood vessel and the ring was stretched circumferentially in wire myography, collagen 

damage in the media was observed in the experiments. This model was mainly designed 

to quantify hoop or circumferential strains along the circumference to correlate with the 

observed collagen damage. It was interesting that circumferential strains reported by the 

computational model were relatively constant along the circumference of the middle 

layer of the ring. Remarkably, experimentally-observed hoop strains in the media were 

also constant along the circumference of the ring. However, it should be noted that the 

correspondence between the middle layer here and the media is not strict in the model. A 

more detailed model with layer-specific geometry, material properties, and residual 

strains is expected to confirm the trend of circumferential strain distribution in media, 

which can then be correlated with medial collagen fiber damage. 
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Interesting trends in axial and radial directions were also observed. Axial and 

radial strains were compressive, which was theoretically correct, as the ring was expected 

to shrink in radial and axial directions while being stretched in the circumferential 

direction. It was sensible that radial strain was lowest in an inner layer near the needle as 

the inner layer was expected to become more compressed by the needle. Conversely, 

axial strain distribution through the wall thickness was largely uniform. The absolute 

value of axial strains was lower near the needle and higher in the portion between the 

needles, which is the same as the experiment. It was interesting that the model could 

capture this phenomenon with frictionless contact between the needle and the ring. This 

trend of axial deformations was clearly visible in Region A (2.21 a and 2.22 c). Region A 

underwent compression in the radial direction due to the needle, which induced positive 

axial deformation. The plane of Region A (the surface opposite to Symmetry Plane 1) 

had no constrains; therefore, Region A deformations were peculiar. Radial and axial 

deformations in Region A were most extreme in the inner layer and least extreme in the 

outer layer. This difference in deformations induced extreme radial-axial and hoop-axial 

shear stresses in Region A.  

This difference in deformations could be further used to justify why we ignored 

diverging shear and axial strains. It was observed that of all the strains, the average hoop 

strain and radial strain were greatest in the region around the needle, which was selected 

for convergence study. Averaged hoop strain and radial strain of the finest mesh diverged 

from that of converged mesh with 0.82% and 0.35% absolute error, respectively. On the 

other hand, averaged axial strain of the finest mesh diverged from the strain of converged 

mesh with 63% absolute error. However, as compared to averaged hoop and radial 
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strains, values of averaged axial strain in the selected region were negligible (~ 1100 

times less). The averaged axial strain in the midsection was relevant, and it diverged with 

only 1.35 % absolute error. Radial-hoop shear strains, hoop-axial shear strains, and 

radial-axial shear strains diverged with 16%, 5%, and 28% absolute error, respectively. 

However, these strains were almost 1/10th of the other relevant strains in the selected 

region. Thus, based on our observations, we concluded that even though strains slightly 

diverged, the mesh converged at 8465 elements. 

Alike normal strains, finite element model reporting shear strain distributions in 

the middle layer were also remarkable. Of all shear strains, the radial-circumferential 

shear strain was the highest, and it was maximized in the middle layer in the region of the 

ring around the needle. This result was in contrast with the expectation that the inner 

layer should have maximum radial-circumferential shear strain. Remarkably, this strain 

distribution through the thickness was uniform along the width of the ring. Interestingly, 

shear strains displayed at extremes in the region around the needles and were 

approximately zero in the region between the needles. It was understandable because 

needles induced shear deformation in the ring, whereas the portion between the needles 

was relatively free of shear strains. 

Wire myography has often been used to study the active behavior of arteries, so 

arterial rings are usually not circumferentially stretched to the extent that we studied in 

our model. However, arterial rings in such experiments are usually subjected to an initial 

stretch to get maximum contractile response [18]. Therefore, the finding that almost all 

the strains vary considerably through the vessel wall thickness near the needle suggests 

that experiments involving circumferential stretching, such as wire myography, should  
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consider these differences in deformations when drawing any conclusions.   

In the present study, the vessel ring material was assumed to be homogenous. 

Strain distributions observed through the thickness of the model may change notably if 

the model is created with layer-specific material properties, geometry, and residual 

strains. Thus, in the future, this model can be modified to include layer-specific details as 

explained above. A layer-specific model will improve correspondence between the model 

and a blood vessel. In this computational investigation, the ring was modeled as 

transversely isotropic material. This assumption may have affected the values of the 

strains. However, we believe that trends of strain distribution along the circumference 

and width of the ring would remain the same, as the trends are a function of the loading 

and the geometry. Thus, correspondence between the model and a vessel can be further 

improved by modeling the ring as nonlinear anisotropic, preferably orthotropic, material. 

inclusion of smooth muscle cell-related geometry and function in the model would 

further improve the efficacy of this model for the vascular biologist.



 

   

CHAPTER 3 

 

PERFUSION PROVIDES NEGLIGIBLE CONTRIBUTION 

TO STRAIN RATE DEPENDENCE 

IN BLOOD VESSELS 

 

3.1 Background 

Traumatic brain injury (TBI) accounted for 2.5 million emergency room visits in 

2010, and 2% of those cases resulted in death [1]. TBI most often leads to vascular 

damage due to the loading of cerebral blood vessels at high strain rates during impact. 

However, there is no definitive study regarding strain rate dependence of cerebral blood 

vessels. Initial tests on cerebral bridging veins proposed a strong influence of rates 

between 1 and 1000 s-1 [8], but later studies concluded that strain rate does not play a 

significant role in these vessels [9]-[12]. However, these subsequent studies did not 

include strain rates more than 250 s-1. Similarly, three more reports on strain rate 

dependence in cerebral arteries established an insignificance of strain rate in these vessels 

[13]-[15].  Remarkably, significant rate dependence in the aorta has been observed in 

other studies [16]-[17]. Thus, there is a need for a better understanding of strain rate 

significance. To resolve this issue, we conducted experiments on middle cerebral arteries 

(MCAs) of rats to characterize their mechanical properties during axial and stretch at 

different strain rates ranging from 0.05 s-1 to more than 700 s-1.  
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 These experiments, which motivated our present computational investigation, 

were carried out on vessel segments perfused with saline. Vessel segments were mounted 

on two needles and were axially stretched (Figure 3.1) by moving one needle at a 

constant speed, while keeping the other needle stationary. A fluid column was connected 

to the moving needle for perfusion while the flow of fluid out of the stationary needle 

was restricted. Vessel segments were pressurized at different pressures (13.3 kPa and 6.7 

kPa), by maintaining the height of the fluid column. Stress-stretch responses were 

recorded and compared to study rate dependence. 

No change in the axial stress-stretch response was observed in response to 

changes in pressure or at strain rates below 500 s-1. However, strain rate dependence in 

the axial direction was witnessed for strain rates above 500 s-1 (Figure 3.2).  

It has been proposed that rate dependence observed in cerebral vessels may be 

attributed to perfusion of the vessel rather than to viscoelasticity of the vessel wall (Lee 

and Haut, 1989). Our hypothesis was that perfusion would primarily offer rate-dependent 

resistance to circumferential deformation of the vessel, which in turn would induce axial 

strain rate dependence in the vessel. Simillarly, we also hypothesised that perfusion plays 

a role in the threshold of 500 s-1. The objective of the current investigation was to use a 

computational model to test these hypotheses. 

 

3.2 Methods 

A computational model of the experiment was created to study the effect of 

perfusion on strain rate dependence observed in our previous investigation. LS-DYNA 

was used to construct and solve the model. A blood vessel segment perfused with fluid  
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Figure 3.1 Axially-stretched rat MCA segment in our previous investigation 

 

 

Figure 3.2 Representative axial Cauchy stress-stretch curves for all groups, including 
high (>700 s-1, HR), medium (400-500 s-1; MR), and low (100-200 s-1; LR) strain rate 
cases. The internal pressure was fixed at 6.7 kPa. These representative cases suggest 

trends toward higher stresses and lower stretches with higher strain rates; there was no 
apparent effect of pressure (from an unpublished investigation in our lab)
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was modeled. The simulation consisted of two steps: first, pressurization of the blood 

vessel; second, axial stretch. An arrangement representing a fluid column was built to 

pressurize the vessel at 13.3 kPa pressure and to keep the vessel perfused during the axial 

stretch. Arbitrary Lagrange Eulerian (ALE) formulation was utilized to simulate the 

fluid-structure interactions in the model. Axial stretch was applied at different strain 

rates, and corresponding stress-strain responses were compared to quantify the effect of 

perfusion on stress-strain responses.  

 

3.2.1 Model geometry  

Model geometry consisted of vessel segment, void, fluid reservoir, and needles 

(Figure 3.3). Averages of cross-sectional dimensions (outer diameter: 0.25 mm; wall 

thickness: 0.04 mm) and lengths (1 mm) of rat MCA segments tested in the experiments, 

were used to create the geometry of the blood vessel. The blood vessel was assumed to be 

a circular tube, and quadrant symmetry was utilized to reduce computational time (Figure 

3.4).  

LS-PrePost was used to create the geometry, which was required to accommodate 

saline (fluid) and structure (vessel segment) interaction. Since LS-DYNA requires an 

empty mesh in which fluid may flow, a void was included in the geometry (Figure 3.5). 

As with the blood vessel, the void was modeled as a quarter cylinder (diameter: 0.4811 

mm; length: 1.8 mm). The diameter of the void was established based on the maximum 

diameter of the blood vessel during pressurization. The void was extended on both sides 

of the vessel segment to ensure the presence of fluid in the vessel during stretch and to 

facilitate fluid flow similar to the experiment.  
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             Figure 3.3 Line diagram of entire model (isometric view) 
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Figure 3.4 Blood vessel segment geometry, (a) isometric view and (b) top view 

 

      

Figure 3.5 Void (a) isometric view and (b) top view  

 

(a) 

(b) 

(a) 

(b) 
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To simulate pressurization by the fluid column, a reservoir of square cross-

sections (side: 0.028 mm; length: 0.1mm) was included in the model geometry. The 

reservoir was located at the end of the void on the moving end of the vessel segment. The 

shape, size, and location of the fluid reservoir (Figure 3.6) in the model were selected 

using trial and error methods. Shape, size, and location of the fluid reservoir in the model 

were varied, and the time for pressurizing the vessel to 13.3 kPa was recorded. 

Dimensions and location of the reservoir with minimum computational cost were selected 

to generate accurate initial conditions as well as to create a realistic representation of the 

fluid flow in the experimental setup.  

Rigid needles connected to either end of the vessel segments simulated needles, 

allowing fluid to flow in and out of the blood vessel (Figure 3.7). To accommodate fluid 

flow during axial stretch, void was needed to be longer than the vessel segment and larger 

in the cross-section to allow the vessel to expand during pressurization. Hence, without 

needles, fluid would have gone below the vessel segment. The purpose of the needles was 

to keep the fluid over the vessel surface or inside the lumen. Cross-sectional dimensions 

of the needles were the same as that of the blood vessel. The length of the needle on the 

stationary end of the vessel was arbitrarily selected as 0.2 mm to simulate blocked 

passage to the fluid, as in the experiment. The span of the needle on the moving end of 

the vessel was 0.6 mm to accommodate the axial displacement of 0.5 mm, as well as the 

reservoir of 0.1 mm length. 

 

3.2.2 Mesh 

LS-PrePost was used to mesh the geometry. The vessel segment was meshed 

using 1260 hexahedral solid elements, as they can fully capture three-dimensional 
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Figure 3.6 Geometry (a) reservoir and (b) location of reservoir in the void  

 

  

Figure 3.7 Needles on either side of the vessel segment (a) Isometric view and (b) top 
view 

(a) 

(b) 

(a) 

(b) 
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states of stress and are ideal for modeling thick parts [28]. The constant stress solid 

element form (ELEFORM 1) in LS-DYNA was used. This formulation is under-

integrated, yet efficient and accurate [28]. Since vessel segments underwent severe 

deformations, this choice was ideal. Belytschok-Bindmen strain co-rotational stiffness 

hourglass control (type 6) with larger values (0.9) was suggested to work better for 

anisotropic material; therefore, it was utilized in this model for a blood vessel segment  

[29]. Needles were also modeled with hexahedral solid elements (type 1; Figure 3.8 and 

3.9). They were modeled as rigid bodies, so no hourglass control was used. 

 As for the vessel segment, the void and fluid reservoir were also modeled with 

hexahedral solid elements (Figures 3.10, 3.11, and 3.12) because the fluid-structure 

interaction mechanism in LS-DYNA requires fluid to be modeled with solid elements. 

Overlapping nodes of the fluid reservoir and the void were merged to allow fluid to flow 

into the void. The one point an ALE multimaterial element form (ELEFORM 11) was 

utilized, allowing both to have more than one material in them. Elements of the fluid 

reservoir were defined for constant pressure (AET=4), to enable it to act as a continuous 

source of fluid at the prescribed pressure. Elements of the void were assigned to have 

variable pressure (AET=0), the same as the rest of the model. Due to the absence of 

distortion, hourglass deformation is not an issue in the case of ALE elements [28]. Thus 

the standard LS-DYNA viscous hourglass formation (type 1) with very low hourglass 

coefficient (1.0E-6) was used for all ALE elements. 

In summary, under-integrated elements are vulnerable to nonphysical modes of 

deformation, but that can be limited by using hourglass stabilization. On the other hand, 

under-integrated elements are computationally less costly and robust. Hence, in this  
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Figure 3.8 Mesh of vessel segment (number of elements along length: 70; number 
of elements along circumference: 6; number of elements along vessel wall 

thickness: 3) (a) isometric view and (b) top view 
 
 

  

Figure 3.9 Mesh of stationary needle (number of elements along length: 14; number of 
elements along circumference: 6; number of elements along vessel wall thickness: 3) (a) 

isometric view and (b) top view 
 

 

 

(a) 

(b) 

(a) (b) 
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Figure 3.10 Mesh of stationary needle (number of elements along length: 42; 
number of elements along circumference: 6; number of elements along vessel 

wall thickness: 3) (a) isometric view and (b) top view 
 
 

   
                            

Figure 3.11 Mesh of void (number of elements along length: 126; number of 
elements on cross-section: 93) (a) isometric view and (b) top view 

 

 

(a) 

(b) 

(a) 

(b) 
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Figure 3.12 Mesh of fluid reservoir (number of elements along length: 7; number of 
elements on cross-section: 4)  

 

 

 

 

 

 

 

 

(a) 

(b) 
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model, under-integrated elements with appropriate hourglass control were used. 

 

3.2.3 Boundary conditions and contacts 

As our objective was to study the effects of perfusion, the primary challenge of 

this investigation was to realistically model fluid-structure interactions between the fluid 

and the surrounding vessel segment.  

The CONSTRAINED_LAGRANGE_IN_SOLID (CLIS) keyword was used to 

establish contact between the fluid and the vessel segment. The inside surfaces of the 

vessel segment and the two needles were specified as slave surfaces (Figure 3.13), and 

the void mesh was defined as the master, while the ALE material of the fluid reservoir 

was assigned to be in contact with slave surfaces. A penalty-type contact was selected. A 

penalty curve (Figure 3.14) was assigned to this coupling to counter leakage of fluid; 

other measures recommended in LS-DYNA literature were also employed to avoid 

leakage. Leakage sites were visually identified during the simulation, and maximum 

pressure at those locations was recorded, so as to assign the proper value of pressure in 

penalty curve. Next the “dbfsi” file outputted by LS-DYNA was studied to find out the 

amount of leakage, as well as the ratio of coupling forces to leakage control forces. The 

CLIS card was modified to keep leakage and the forces ratio minimum at optimum 

computational cost. 

 Similar to the coupling mechanism, LS-DYNA has another card 

(CONTROL_ALE) to control advection of fluid material. Donor cell + HIS advection 

method with the new algorithm for continuum treatment were selected in the 

CONTROL_ALE card based on model requirements and recommendations in LS-DYNA 
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Figure 3.13 Inside surface of vessel segment and needles defined as slave for fluid 
structure interaction  
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Figure 3.14 Penalty curve assigned to coupling mechanism to apply coupling pressure 
proportional to depth of fluid leakage 
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literature  [28],[29]. As we were modeling fluid flow, smoothing was turned off as 

recommended in LS-DYNA literature [28],[29], in order to save computational cost. 

While CLIS assumes a “slip” boundary condition between fluid and structure, the 

automatic Euler boundary condition (EBC) option, present in CONTROL_ALE , 

alternatively enabled us to apply a “no-slip” boundary condition. We conducted our 

entire investigation using the “slip” condition and did some additional tests with the “no-

slip” boundary condition to understand the significance of fluid flow on axial strain rate 

dependence of the vessel segment.    

 Along with advection control, boundary conditions were specified to simulate the 

realistic movement of fluid in the model. As per quadrant symmetry, the flow of fluid out 

of the X-symmetry face (Figure 3.15 a) was restricted by constraining the nodes on that 

surface in the X-direction. Similarly, nodes on the Y-symmetry face were arrested in the 

Y-direction to prevent fluid flow (Figure 3.15 b). The nodes on the end of the void on the 

stationary needle were constrained in the Z-direction (Figure 3.15 c) to simulate blocked 

flow as in the experimental setup. Similarly, quadrant symmetry conditions were used on 

blood vessel symmetry faces (Figure 3.16 a and b). The stationary needle was constrained 

in the X-, Y-, and Z-direction displacements and rotations, while the moving needle was 

constrained in the X-, Y-, and Z-direction rotations as well as X- and Y-direction 

displacements. The moving needle was free to move in the Z-direction. A fixed rigid 

contact was established between the ends of the vessel segments and the needles by 

merging their nodes. 

Another challenge of the model was to simulate flow in and out of a blood vessel 

experimental setup, fluid flowed in and out of the moving end of the blood vessel. By  
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Figure 3.15 Restrict the fluid flow out of (a) X symmetry face, (b) Y symmetry face, (c) 
bottom surface of void 

 

 

 

 

 

 

(a) (b) (c) 
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3.16 Symmetry boundary conditions on (a) X symmetry face and (b) Y symmetry face  

 

 

(a) (b) 
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trial and error, the inflow was defined by creating a reservoir with 13.5 kPa pressure as if 

the fluid column with approximately 13.3 kPa pressure was connected to it. At the 

moving end of the vessel—as explained in above sections—the outflow was defined by 

applying a pressure boundary condition of 13.8 kPa on the moving end of the void 

(Figure 3.17). Fluid flowed out of the reservoir and into the vessel continuously until the 

reservoir pressure was less than its surroundings and fluid flowed out of the void when 

the pressure of the fluid increased more than the specified value. Elements of the void 

inside the vessel segment and needles were filled up with fluid from the reservoir at the 

beginning of the simulation. INITIAL_VOLUME_FRACTION_GEOMETRY keyword 

was used for this purpose.  

 

3.2.4 Material model selection and verification 

 Material model selection involved selecting material models and parameter values 

for the blood vessel, fluid, void, and needles. In addition, LS-DYNA requires the 

Equation of State (EOS) to be defined for ALE materials. Appropriate materials were 

selected from available material models in LS-DYNA.  

 LS-DYNA has a full range of anisotropic material models, including those for 

orthotropic materials, but most are linear, which is not consistent with our requirement 

for modeling a blood vessel. Instead, we required a nonlinear anisotropic material model 

to replicate the behavior of cerebral arteries. A compromise was made by selecting a 

transversely isotropic material model (MAT_SOFT_TISSUE), including an isotropic 

Mooney-Rivlin matrix reinforced by fibers that has a strain energy contribution with the 

qualitative material behavior of collagen [30]. The model also has a viscoelasticity 
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3.17 Pressure boundary condition (13.3 KPa) on top of void 
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option, which may be useful in the future, but this was not utilized in the present 

investigation. This model is based on the work of Weiss et al. [1996] and Puso and Weiss 

[1998] [29]. The overall “uncoupled” strain energy (W) function for the material model is 

given in Equation 6 [30]. 

W = C1 ( Ĩ1 – 3) + C1 ( Ĩ2 – 3) + F (λ) + 0.5 K [ln (J)]2 (6)  

where Ĩ1 and Ĩ2 are the deviatoric invariants of the right Cauchy deformation tensor, and λ 

is the deviatoric part of the stretch along the current fiber direction. The straightening of 

fibers (i.e., before a critical stretch limit – λ < λ*) is described by an exponential function, 

whereas the behavior of straightened fibers past the critical stretch limit (λ ≥ λ*)  is 

defined by a linear function. K is bulk modulus, and J =detF is the volume ratio. Shear 

strains were assumed to be insignificant. Incompressibility was enforced by including 

Lagrange multiplier p in stress equations. Corresponding average Cauchy stress values 

are expressed as given below [24],[31] 

tzz = 2 [ ( λzz
2  - 1 / (λzz

2 λcc
2) ) C1 – ( (λzz

2 λcc
2) – 1 / λzz

2 ) C2 ] + λWλ
  a a        (7) 

tcc = 2 [ ( λcc
2  - 1 / (λzz

2 λcc
2) ) C1 – ( (λzz

2 λcc
2) – 1 / λcc

2 ) C2 ] (8) 

where tzz  and tcc are the theoretical Cauchy stresses in the axial and circumferential 

directions. We assumed radial stresses to be negligible based on our previous work with 

human blood vessels [14],[15].  The term “a” is the unit vector in the fiber direction. For 

the present investigation, we assumed that the fibers of interest were oriented axially. 

Therefore, in the model, ‘a’ was [0,0,1] and term a a was 0 for stresses in the 

circumferential and radial direction. As a consequence, the term λWλ was non-zero only 

for axial stresses. The term λWλ  described fiber behaviors , i.e., unstretched, stretched up 

to critical stretch, and stretched beyond critical stretch λWλ delineated stretching of fibers 

at different stages of the stretch as given below [31]. 
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λWλ = 0,  λ < 1 

λWλ = C3 (exp ( C4 ( λ – 1) )  - 1 ),    λ <  λ*  

                                   λWλ = C5 λ + C6 ,   λ  ≥  λ*                                            (9)                  

We assumed λ* to be 1.2, based on our previous experiments. Exponential stresses were 

scaled by C3, and the collagen fiber uncrimping rate was determined by C4. C5 was the 

modulus in the linear function of straightened collagen fiber. C6 was characterized as 

shown below in Equation 10 to maintain continuity between the exponential and linear 

portions of the model30.  

C6  = C3 (exp ( C4 ( λ* – 1) )  - 1 ) – C5 λ* (10) 

 Quasi-static experimental data were used to fit the above-defined stress equations 

because our hypothesis was that the experimentally-observed rate dependence in blood 

vessels was caused by luminal fluid inertia rather than by viscoelasticity inherent to the 

vessel material. In our experimental investigation, average curves were plotted, and data 

were grouped for constitutive model fitting. The group of data used for the present study 

included a quasi-static axial stretch test at ~13.3 KPa and ~6.7 KPa pressure, as well as 

quasi-static circumferential tests at medium and low pressures. Average experimental 

axial and circumferential stresses (Tzz  and Tcc ) were compared with theoretical values. A 

constrained nonlinear regression routine (fminsearchbnd) in MATLAB (Mathworks, 

Natick, MA) was utilized to minimize the objective function f (Equation 11) in order to 

find material parameters C1 , C2, C3, C4, and C5 (units MPa) that best fit the experimental 

data (Figure 3.18).  

 

(11) 

where N is representative of a total number of data points, and the theoretical stresses are  
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Figure 3.18 Curve fitting for getting material parameters (a) circumferential stresses from 

circumferential tests and axial stresses from axial tests, (b) Axial stress from 
circumferential tests circumferential stress from axial tests 

 
  
 

 

(a) 

(b) 
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expressed in Equations 7 and 8. Based on the results of curve-fitting, we established 

parameters C1 =0.014953 MPa, C2 = 0.006494 MPa, C3 = 0.007929 MPa, C4 = 

16.678829. However, C5 = 2.4146941 MPa was established by extrapolating 

experimental data linearly and fitting it to linear stress function. In addition, density (ρ) 

and bulk modulus (K) of blood vessels were assumed to be 1.075e-003 g/mm3 and 22000 

MPa, respectively. These values were selected based on the assumption that a blood 

vessel has a density of and bulk modulus the same as water. 

 Similar to the vessel segment, appropriate material models were assigned to other 

parts in the model. MAT_NULL was assigned to the fluid reservoir with a fluid density 

0.000998 g / mm3 [32], cavitation pressure =- 24 MPa [33], and viscosity = 1e-006 

MPa.ms [34].  In addition, EOS_Gruneisen, which relates the change in pressure of the 

fluid to the change in its corresponding specific internal energy, was specified for fluid. 

The speed of sound in fluid was set as 1647 mm/ms, S1 = 1.92, S2 = -0.092, gamma= 0.35 

[28]. For no change in density, the pressure of the fluid can be calculated as a function of 

gamma and specific internal energy [28]. As we wanted to observe strain rate dependence 

of vessels with the 13.3 kPa pressure, we selected value of e0 =0.038517 N-mm/g, to 

achieve pressure 13.5 kPa for the reservoir  [28]. The void was assigned 

MAT_VACUUME, with a density of air 1.25e-006 g/mm3. It is a dummy material which 

represents a vacuum in the multimaterial ALE model  [30] (i.e., elements can have more 

than one material in them, and any material can flow in and out of MAT_VACCUME). 

MAT_RIGID_BODY was assigned to the needles. 

To verify our above-defined material parameters for the vessel segment, we 

conducted material model verification. As we were only verifying the blood vessel 
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material model, this simulation consisted of the vessel material only having the same 

shape and dimensions as specified in Section 3.2.1. Mesh and symmetry boundary 

conditions of the vessel segment were the same as explained in Sections 3.2.3 and 3.2.3, 

respectively. For verification, the one end of the vessel segment was fixed in the axial 

direction (Figure 3.19 a) and a quasi-static displacement of 0.5 mm at 0.02 m/s second 

rate was applied at the other end (Figure 3.19 b). Due to the quasi-static rate, the axial 

stress distribution (Figure 3.19 c) was uniform. The average axial stress of all the 

elements in the model was calculated. Axial and circumferential stretch values were 

extracted from the model, and axial stress was theoretically calculated using Equations 2 

and 3. Model and theoretical stress-stretch responses were compared by plotting both 

model and theoretical axial stresses against axial stretch (Figure 3.20 a). We found that 

they both match with an insignificant error. To confirm the strain rate independence of 

the vessel material, we also plotted the average axial stress-strain response at three strain 

rates (1000 s-1, 500 s-1, 100 s-1). As expected, the material model was strain-rate-

independent (Figure 3.20 b) 

 

3.2.5 Loading 

The aim of this investigation was to replicate high-rate axial stretch experiments 

in a computational model, but it was important to apply the axial stretch from the same 

initial state as that of the experiment. In that case, the initial state of the vessel was 

predominantly defined by the pressure of the luminal fluid.  

As explained in Section 3.2.3, pressurization of the vessel was carried out using 

the fluid reservoir and pressure boundary condition. Zero displacement was applied to the 
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Figure 3.19 Verification model (a) boundary condition to axially fixed vessel segment, 
(b) axial stretch applied at the end of the vessel segment, (c) axial stress distribution 

 
 
 
 
 
 

 
 

 

(a) (b) (c) 
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Figure 3.20 Response of the vessel segment (a) comparison of theoretical calculations 
and model response of axial stress-stretch; (b) strain rate independent response of vessel 

segment 
 

 

 

 

(a) 

(b) 
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needle and pressure at the center of the void was calculated and plotted against time to 

determine the time step at which 13.3 kPa pressure was attained (Figure 3.21). Elements 

in the “slip” model were pressurized in 4.1125 ms, while the “no-slip” model required 

22.8 ms. Once the desired pressure of the fluid was reached (Figure 3.22), 0.5 mm 

displacement in the axial direction was applied to the moving needle while the stationary 

needle was kept fixed, thereby axially stretching (λmax = 1.5) the blood vessel (Figure 

3.23). This loading was applied at 100 s-1 strain rate (velocity = 0.1 m/s), 500 s-1 strain 

rate (velocity = 0.5 m/s), and 1000 s-1 strain rate (velocity = 1 m/s) (Figure 3.24). 

Tests with fluid having density 100 times that of water (0.0998 gm / mm3) were 

carried out to determine the effect of perfusion fluid density on strain-rate dependence as 

well as on overall stress-strain response. This model was run at the three strain rates and 

was referred as the high-density model here onwards. 

 

3.2.6 Convergence study 

A convergence study was carried out to determine the mesh size beyond which 

further mesh refinement would produce the same results to confirm consistency of model 

response, irrespective of change in mesh density. The mesh size along the axis of the 

blood vessel was varied from coarsest to finest. For mesh size along the circumference 

and through the vessel, the thickness was maintained such that the aspect ratio was less 

than 5. The mesh size of the void along the axis and circumference was kept the same as 

that of the vessel, to maintain suitable coupling between fluid and structure [30],[31]. 

First, a simulation was run with just a pressurization step, without any axial stretch, to get 

the time step at which 13.3 kPa pressure was achieved. The simulation was later rerun, as 
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Figure 3.21 Pressurization illustration (a) elements at the center of the void selected for 
pressure calculations; (b) average pressure of selected elements plotted against time (for 

1000 s-1 strain rate model) 
 
 

   

Figure 3.22 Pressurized geometries (a) vessel segment and (b) column of fluid at the end 
of the pressurization stage 

 
 

(a) 

(b) 

(a) (b) 
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Figure 3.23 Axially-stretched vessel at 1000 s-1 strain rate (1.3 stretch) (a) 
isometric view and (b) back view 

 
 

 

 

(a) (b) 
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Figure 3.24 Axial displacement load curve for model for (a) ‘slip’ model and (b) ‘no-slip’ 
model 

(a) 

(b) 
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explained in Section 3.2.5, with a modified load curve of the moving needle so as to 

apply axial stretch after that time step. The strain rate for all simulations in the 

convergence study was 1000 s-1 to save computational time. Average axial stresses and 

strains, as well as mean circumferential and radial stresses and strains at 1.3 stretch over 

the flat portion of the pressurized artery (Figure 3.25), were evaluated and plotted against 

a number of elements to study convergence (Figure 3.26). We considered the flat portion 

of the artery to eliminate end effects arising from connection to the rigid needles. Mesh 

converged at 13986 elements with a vessel segment having 70 elements along the length, 

6 elements along the circumferenc, and 3 elements through the thickness. Averaged axial, 

hoop, and radial stress of the finest mesh diverged from that of converged mesh with 

2.09%, 3.13%, and 2.34% absolute error, respectively. Averaged axial, hoop and radial 

strain of the finest mesh diverged from that of converged mesh with 1.3 %, 3.11%, and 

2% absolute error, respectively. Averaged axial strain didn’t diverge. 

 

3.2.7 Model validation 

In order to have confidence in the results of a finite element model, validation 

with experimental results is required. Since material model parameters of the artery were 

found by fitting the material model to quasi-static test data, the simulation for validation 

was run at relatively low 20 s-1 strain rate (0.02 m/s); slower speeds were not feasible 

given the large required computation times. The average axial and circumferential stress 

over the midsection of the vessel (as explained in Section 3.2.6) was plotted against axial 

and circumferential stretch, respectively. Experimental data from our previous 

investigation with rat MCA were used for this comparson. We used quasi-static test data.  
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Figure 3.25 Elements selected for convergence study in the flat portion of the vessel (a) 
back view and (b) isometric view 

 

 

 

 

 

(a) (b) 
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Figure 3.26 Convergence plots at 1.3 stretch of average stress / strain vs. number of 
elements in the model (a) axial stress, (b) circumferential stress, (c) radial stress, 

 (d) axial strain, (e) circumferential strain, (f) radial strain 
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Figure 3.26 continued 
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Figure 3.26 continued 
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The model response was compared against the the experimental axial and circumferential 

stress-stretch response (Figure 3.27). In an earlier investigation, results from 12 quasi-

static experiments were reported. We designed the model to predict the response of the 

vessel only up to the yield point. Thus, results of experiments up to yield were used to 

validate the model. As vessel segments reached yield point at different stretch values, the 

stress-stretch response of all of the experiments was plotted, instead of using an average 

response of all experiments. It was observed in the experiments that vessels yielded 

mostly around the 1.3 axial stretch. Thus, we validated the model only up to that point. 

Our observations of the model were also based on an axial stretch up to 1.3. In general, 

the model predicted a stiffer axial response than that of the experiments. While the model 

exhibited maximum absolute errors up to 53% in comparison to experimental data, the 

overall behavior was deemed to provide a good match of the data. For example, at 1.35 

axial stretch, the minimum absolute error in axial response was 13% and maximum 

absolute error was 59%. Similarly, circumferential response of the model (3.27 b) 

deviated from the experimental response, but it was in the same range as that of the 12 

experiments. At 1.3 axial stretch for the circuferential stretch minimum, absolute error 

was 7% and maximum absolute error was 19%. Similarly for circumferential stress, 

minimum and maximum absolute errors were respectively 15% and 39%. The material 

parameters of the computational model were determined based on an average of the 12 

experiments; thus, model predictions were close to average exeperimental response. In 

addition, the diameter of the vessel segment at 13.3 kPa pressure (0.34 mm) was 

approximately the same as the experimentally-measured diameters (0.33–0.35 mm) of the 

vessel segments at the same pressure.  
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Figure 3.27 Validation of model with experimental data 

 

(a) 

(b) 
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3.2.8 Postprocessing methods 

 As expected, dynamic loading produced a strain wave in the vessel segment 

(Figure 3.28). Therefore, we studied the results of individual elements in the flat portion 

of the vessel segment (Figure 3.29) instead of averaging the stress-strain response. 

Elements were selected such that they were representative of axial, radial, and 

circumferential distribution of vessel segment characteristics. However, the axial stress-

strain response of all the elements was found to be similar. Therefore, for comparisons 

between different models, axial stress-strain response of element–Axial 1 was used. 

Moreover, in case of circumferential and radial stress-strain responses, individual element 

data were noisy. Hence, for all those cases, average stress-strain response was calculated. 

 We were interested in the axial and circumferential stress-strain response of the 

vessel segment. Since the vessel segment was assumed to be cylindrical and was axially 

stretched, we were able to establish 2nd principal stress-strain as circumferential stress-

strain and 3rd principal stress-strain as radial strain.  

 

3.3 Results 

In this investigation, the stress-strain response of the vessel was plotted and 

compared with the three strain rates to study strain-rate dependence in the axial, 

circumferential, and radial directions.  

We observed axial deformations of the vessel segment to be similar (Figure 3.30) 

for all three strain rates (1000 s-1, 500 s-1, 100 s-1). The axial stress-strain response of all 

the elements for all the strain rates was witnessed to be nearly uniform (Figure 3.31). The 

highest absolute difference between stresses corresponding to highest stretch was  



86 

 

 

 

Figure 3.28 Elements selected for postprocessing  

 

   

Figure 3.29 Strain wave in the dynamically stretched vessel segment for model with 1000 
s-1 strain rate 
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Figure 3.30 Deformation of vessel segment at 1.3 stretch with (a) 1000 s-1 strain 
rate; (b) 500 s-1 strain rate; (c) 100 s-1 strain rate 

 

(a) (b) 

(c) 
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Figure 3.31 Axial stress – strain response of model (with slip boundary condition) for 
strain rate dependence study (a) element-a, (b) element-b, (c) element-g,  

(d) element-c, (e) element-d, (f) element-f, (g) element-e 
 

(a) 

(b) 
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Figure 3.31 continued 

(c) 

(d) 
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Figure 3.31 continued 

(e) 

(f) 
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Figure 3.31 continued 
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observed at element-e (Figure 3.31 e) and it was approximately 8%. However, this 

difference was observed between 100 s-1 and 1000 s-1 strain rates; on the other hand, 

absolute difference between responses at 1000 s-1 and 500 s-1 was relatively negligible. 

Similar trends were witnessed in all the other elements. Also, a small strain-rate 

dependence in the averaged axial stress-strain response was witnessed in the high-density 

model (Figure 3.32). At 1.3 stretch, the difference in stresses at 1000 s-1 and 100 s-1 

was approximately 2 %. Furthermore, similar to the normal density model, difference 

between 1000 s-1 and 500 s-1 model was relatively negligible. Here we calculated 

averaged stress-strain response as individual response of the high density model was 

noisy. Similarly, a little change in axial stress-strain response was observed when results 

of the model with perfusion were compared with the results of the model without 

perfusion (Figure 3.33). The stresses recorded in the perfused model and the model 

without perfusion differed by 2% at the end of the axial stretch and they were higher in 

the perfused model. Perfusion didn’t change the trend of the stress-strain response. Axial 

strain vs. time was plotted for element “a,” for the perfused model, the model without 

perfusion, and the high-density model, to understand the trend of axial deformation 

during axial stretch at 1000 s-1 strain rate (Figure 3.34). It was observed that axial 

deformation was tensile, as expected, and was the same for all three models. 

   Unlike axial stress-strain response, circumferential stress-strain response varied 

considerably with strain rate (Figure 3.35). The difference in circumferential 

deformations at different strain rates could also be seen in Figure 3.30. In Figure 3.30, it 

was observed that for 1000 s-1 and 500 s-1 strain rates, the circumferential deformation 

was not uniform along the length of the vessel segment, while it was almost uniform for  
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Figure 3.32 Axial stress-strain of high density model averaged over midsection (a) overall 
respone, (b) zoomed in response at the end of the stretch 

 

(a) 

(b) 
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Figure 3.33 Element-a comparison of stress-strain response of the model with 
perfusion and the model without perfusion 

 

 

Figure 3.34 Axial deformation trend for element-a at 1000 s-1 strain rate 
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Figure 3.35 Average circumferential stress-strain response of the vessel for 
strain-rate dependence study,  
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the 100 s-1 strain rate case. This phenomenon was more prominently witnessed in 

deformations of the high-density model (Figure 3.36). The average circumferential stress-

strain response of the high-density model at the three strain rates was as shown in Figure 

3.37. In addition, results of models with and without perfusion were compared to 

examine the effect of perfusion on the circumferential stress-strain response. It was 

observed that without perfusion, the circumferential strain was negative with the almost 

constant trend of circumferential stress-strain response (Figure 3.38). Conversely, with 

perfusion, circumferential strain was observed to be positive with an increasing trend of 

circumferential stress-strain response. To verify the circumferential stress trend, we 

plotted circumferential stress versus circumferential stretch of one of the axial-stretch 

experiments carried out at 987 s-1 strain rate (Figure 3.39). Except for the initial response 

(up to circumferential strain 0.1), the circumferential stress-strain trend reported by the 

model was largely similar to experimental observations. Circumferential strain versus 

time was plotted for element “Axial 1,” for the perfused model, the model without 

perfusion, and the high-density model, to understand the trend of circumferential 

deformation during axial stretch at 1000 s-1 strain rate (Figure 3.40).  

Radial stress was assumed to be zero while determining material model  

parameters (Section 3.2.4). Hence, we calculated average radial stresses and strains of the 

midsection of the vessel to check the validity of our assumption. Radial stresses were 

compressive and negligible as compared to the axial and the circumferential stresses 

(Figure 3.41). The radial stress-strain response was calculated at three strain rates, and 

strain rate dependence was witnessed in the radial direction (Figure 3.42). The absolute 

value of radial stress and strain increased with an increase in strain rates. A similar trend  
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Figure 3.36 Deformation of vessel segment perfused with fluid having density 0.0998 g / mm3 
at 1.3 stretch with (a) 1000 s-1 strain rate; (b) 500 s-1 strain rate; (c) 100 s-1 strain rate 

 

(a) (b) 

(c) 
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Figure 3.37 Average circumferential stress-strain response of the vessel in the 
high-density model for strain rate dependence study 

 

 

Figure 3.38 Comparison of average circumferential stress-strain response of the 
model with perfusion and model without perfusion 
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Figure 3.39 Circumferential stress vs. stretch response from an axial stretch 
experiment at 987 s-1 strain rate 

 

 

Figure 3.40 Circumferential deformation trend for element – “a” at 1000 s-1 strain rate 
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Figure 3.41 Element a - comparison of axial, circumferential, and radial stress-strain 
responses (strain rate : 1000 s-1) 

 

 

Figure 3.42 Radial stress-strain response at the three strain rates to determine strain rate 
dependance in radial direction 
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was observed in the radial stress-strain response of the high-density model (Figure 3.43). 

Radial strain vs. time was plotted for element “a,” for the perfused model, the model 

without perfusion, and the high-density model to understand the trend of radial 

deformation during axial stretch at 1000 s-1 strain rate (Figure 3.44). 

We also computed axial reaction forces on the needle for the three strain rates and 

plotted those against axial stretch. We observed that like axial stress, axial reaction force 

was also independent of strain rate influence.  

Like stress-strain responses, pressure traces of the model for the three strain rates 

were calculated as explained in Section 3.2.5 and were plotted against axial stretch. It 

was found that the pressure of the fluid inside the lumen was slightly higher at 1000 s-1 

and 500 s-1 strain rates than at 100 s-1 (Figure 3.45). 

We also compared axial stress-strain responses of the model with the ‘slip’ 

boundary condition and the model with the ‘no-slip’ boundary condition. Axial stress-

strain responses of the seven elements (Figure 3.28) for both ‘slip’ and ‘no-slip’ models 

at different strain rates were compared (Figure 3.46-3.53). We found that the axial stress-

strain response was almost the same for both boundary conditions at all strain rates and 

all over the vessel geometry. However, the ‘slip’ boundary condition case was 

computationally less costly than that of the ‘no-slip’ boundary condition. Thus, results 

regarding strain rate dependence presented in this investigation were with ‘slip’ boundary 

condition. 

 

3.4 Discussion 

In this research, we used a computational model to test our hypothesis that 

perfusion directly resists circumferential deformation and the resulting circumferential 
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Figure 3.43 Average radial stress-strain response of the vessel in the high-density model 
for strain rate dependence study 

 
 

 

Figure 3.44 Radial deformation trend for element-a at 1000 s-1 strain rate 
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Figure 3.45 Effect of strain rate on pressure trace 

 

 

Figure 3.46 Axial reaction force vs. axial stretch 
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Figure 3.47 Axial stress-strain response of element-a (Figure 3.28) at strain rate (a) 
1000 s-1, (b) 500 s-1, (c) 100 s-1  

(a) 

(b) 

(c) 
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Figure 3.48 Axial stress-strain response of element-b (Figure 3.28) at strain rate (a) 
1000 s-1, (b) 500 s-1, (c) 100 s-1  

(a) 

(b) 

(c) 
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Figure 3.49 Axial stress-strain response of element-g (Figure 3.28) at strain rate (a) 
1000 s-1, (b) 500 s-1, (c) 100 s-1 

(a) 

(b) 

(c) 
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Figure 3.50 Axial stress-strain response of element-c (Figure 3.28) at strain rate (a) 
1000 s-1, (b) 500 s-1, (c) 100 s-1 

(a) 

(b) 

(c) 
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Figure 3.51 Axial stress-strain response of element-d (Figure 3.28) at strain rates (a) 1000 s-1, 

(b) 500 s-1, (c) 100 s-1 

(a) 

(b) 

(c) 
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Figure 3.52 Axial stress-strain response of element–f (Figure 3.28) at strain rates (a) 
1000 s-1, (b) 500 s-1, (c) 100 s-1 

(a) 

(b) 

(c) 
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Figure 3.53 Axial stress-strain response of element-e (Figure 3.28) at strain rates (a) 
1000 s-1, (b) 500 s-1, (c) 100 s-1 

 

 

(a) 

(b) 

(c) 
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strain rate dependence influences axial strain rate dependence. The model shows that this 

effect has negligible influence on results, suggesting that fluid inertia is not the source of 

rate dependence observed in vessel stretch experiments. 

According to our hypothesis, we observed the effect of perfusion and strain rate 

on the circumferential stress-strain response of the vessel segment (Figure 3.34). One 

cause for such behavior can be the inertia of fluid during the dynamic axial stretch. The 

effect of inertia could be understood when the behavior of the model with perfusion was 

compared with the behavior of the model without perfusion. In the model without 

perfusion, the vessel segment stretched in the axial direction and shrank in the 

circumferential and radial directions when axial stretch was applied at any rate. Thus, in 

the model without perfusion, circumferential strain was negative and reduced as the 

vessel was stretched even at the high strain rates. However, in the perfused model at the 

high strain rates, circumferential strains increased as the fluid in the lumen could not 

shrink in diameter as fast as the axial deformation of the artery. Particularly, the fluid in 

the lumen of the midsection of the vessel didn’t deform as fast as the vessel segment. The 

increase in the circumferential strains may have been result of displacement of the fluid 

into the midsection from adjacent sections of the lumen, which deformed relatively fast. 

Fluid present in the midsection may have offered resistance to circumferential 

deformation. Thus, circumferential stress also increased along with circumferential strain. 

Consequently, more resistance was offered to circumferential deformation due to inertia 

of the fluid at high strain rates. This behavior was witnessed more prominently in the 

high-density Model (Figure 3.35), but its stress-strain response was largely similar to the 

stress-strain response of the normal density model. Nevertheless, that perfusion was 
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responsible for this phenomenon was confirmed by comparing corresponding results of 

the perfused model and the model without perfusion. Circumferential stress-strain in the 

model without perfusion was very negligible and compressive in nature. On the other 

hand, circumferential stress-strain in the perfused vessel model was tensile and 

significant. Only at 100 s-1 strain rate, circumferential stress-strain started to reduce at the 

end of the axial stretch. For 1000 s-1 strain rate, circumferential stress-strain response had 

an increasing trend. This observation supported our earlier explanation about less 

resistance to circumferential deformation at low strain rates. Therefore, perfusion was 

responsible for strain rate dependence in the circumferential direction.  

However, from our results, clearly perfusion did not play a significant role in 

axial strain rate dependence as observed in our previous experimental investigation. Even 

with an unrealistically high-density fluid in the high-density model, we were not able to 

see any significant strain rate dependence. A small shift in stress-strain response was 

witnessed when axial stress-strain responses of models with and without perfusion were 

compared. This shift was due to pressurized lumen in the perfused model as opposed to a 

pressure-free blood vessel in the model without perfusion. Axial stress increased by 

approximately 2% at the end of the stretch as result of pressure in the lumen. Thus, for 

our investigation, perfusion offered a small resistance to axial deformation, but this 

resistance was not strain rate dependent.   

According to the Generalized Hook’s law, strain rate dependence in a 

circumferential direction would be expected to indirectly influence the strain rate 

dependence in the axial direction. However, we were not able to determine the exact 

cause of the absence of axial strain rate dependence in our model. It might be because 
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circumferential stresses were comparatively much smaller than axial stresses 

(approximately 10 times smaller). The amount of strain rate induced by circumferential 

stresses was even smaller than that. Thus, axial strain induced due to strain rate 

dependent circumferential stresses might be negligible, which resulted in no axial strain 

rate dependence. However, more study is required to prove this or to find better 

explanations. 

Like circumferential direction, the radial stress-strain response was also 

influenced by perfusion. An increase in compressive radial strain could be seen in Figure 

3.44. However, strains in the high-density model were largely similar to strains in the 

normal density model. Moreover, strain rate dependence was observed in radial 

directions as well. Again, the reason for that may be inertia of fluid, as explained above. 

At higher strain rates, the bulk of water present in lumen compressed the vessel wall, thus 

absolute values of both radial strains and radial stresses were the highest at 1000 s-1. 

Absolute values of radial strains and stresses were lower for lower strain rates as less 

fluid was present in the midsection lumen at low strain rates. Thus, there was less 

compression of the vessel wall.  

Our investigation with slip and no-slip boundary conditions between the vessel 

wall and the fluid lead us to believe that flow characteristics do not have any effect on 

strain rate dependence. Thus, if there is any strain rate dependence due to perfusion, it 

can only be because of the inertia of fluid.  

We observed strain rate dependence beyond 500 s-1 in our earlier experimental 

investigation. We hypothesized that at strain rates below 500 s-1, the resistance offered 

by perfusion to circumferential deformations, and in turn axial deformations, was low, 
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but that the resistance offered by perfusion at strain rates above 500 s-1 was considerable 

enough to have a notable influence. However, in the computational model, we observed 

that perfusion plays no role. Another explanation for the experimentally-observed rate 

dependence could be due to viscoelasticity of the vessel wall, but more investigation will 

be required to understand the mechanism of such influence. 

 In conclusion, our hypothesis was true about the contribution of perfusion in 

circumferential strain rate dependence. However, the circumferential stresses were 

insignificant; thus, axial stresses influenced by circumferential stresses were too small to 

cause axial strain rate dependence. While, this is one possible explanation, further study 

is required to confirm this hypothesis or to find a better explanation. In addition, the 

density of the fluid did not influence stress-strain behavior in the axial direction, which 

eliminated the density of the fluid as a factor contributing to axial strain rate dependence. 

Nevertheless, a parametric study with larger diameters of vessel segments will help 

exclude the presence of fluid in the lumen as a cause of axial strain rate dependence. In 

the present computational investigation, the vessel segment was modeled as a 

transversely isotropic material. In the future, the vessel can be modeled as an orthotropic 

material to improve correspondence of the model with vessel tissue. In modeling the 

vessel segment as a homogenous, transversely isotropic material, we assumed axial 

direction as the principal direction of fibers for the entire vessel segment. This is true for 

adventitia. However, principal fiber direction in media is circumferential.  Hence, layer-

specific modeling of the vessel segment will further improve correspondence between a 

blood vessel and the model. In addition, a model with viscoelastic material properties of 

the vessel segment will be required to further understand strain rate dependence. 
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Moreover, modeling the fluid as blood, instead of as saline, may also improve model 

relevance. Relative viscosity of plasma at 37 Deg. Celsius is about 1.8 [35]. Thus, for a 

model with blood, a no-slip boundary condition would be established between the vessel 

segment and the fluid. Based on our observation, we believe that this would not change 

the results of the simulation regarding axial strain rate dependence. However, such study 

would be required to establish the effects of the change in viscosity of the fluid. 

Our future investigations may include other factors that might have played a role 

in the different conclusions regarding strain rate dependency of blood vessels. Apart from 

perfusion, other variables that might have contributed to different conclusions could be 

the range of strain rates at which the experiments were conducted, different animals that 

were used in different experiments, and different organs from which blood vessels were 

dissected. For example, initial tests on human cerebral bridging veins suggested a strong 

effect of rates between 1 and 1000 s-1 [8], but in later studies on human cerebral bridging 

veins conducted at rates below 250 s-1, no strain rate dependence was observed [9]-[12]. 

In another example, studies performed on human and pig thoracic aortas showed 

remarkable influence of strain rate [16],[35] while experiments performed on human 

cerebral arteries didn’t report any strain rate dependence [13]-[15]. The reason for 

different conclusions in these cases might be the different physical constitutions of these 

blood vessels in different organs of different animals. Apart from the factors explained 

above, the method of specimen preparation could also have contributed to different 

conclusions. For example, experiments performed on cerebral blood vessels were 

conducted on round blood vessels [13]-[15] whereas experiments performed on thoracic    
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aortas were carried out on I-shaped specimens [16]-[17]. Determining which of these 

factors influence strain rate dependence would further improve our understanding of TBI. 



CHAPTER 4 

CONCLUSION 

We created two computational models of isolated blood vessel experiments in this 

investigation. In the first model, we wanted to quanitfy vessel strains throughout the 

vessel to correlate with microstructural damage observed in an arterial ring subjected to 

circuferential stretching by wire myography. We found out that vessel strains vary 

considerably through the vessel wall and along the circumference. Near the needles, 

vessel strain distributions were particularly complex. However, hoop strains in the middle 

layer of the ring were largely uniform along the circumference. Interestingly, 

experimentally-observed collagen damage was also uniform in the middle layer, i.e., 

media. However, we could not correlate the hoop strains in the middle layer with 

microstructural damage observed in media, as the ring was modeled as homogenous 

material. Thus, a model with layer-specific material proporties, geometry, and residual 

strain will further improve the correspondance of the model and a blood vessel. In this 

model, the arterial ring was modeled as transversly isotropic material; orthotropic 

representation of the ring would make the model more realistic and its results more 

relatable. This finite element model will be more effective to a vascular biologist if 

smooth muscle cells were included in the arterial ring.  

The second computational model was designed to determine the contribution of 
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perfusion to the strain rate dependence of blood vessels. The model showed that 

perfusion didn’t contribute to axial strain rate dependence. We identified insignificant 

values of circumferential stresses as one possible cause of a negligible axial strain rate 

dependence. Even though perfusion played a role in circumferential and radial strain rate 

dependence, insignificant values of both the stresses influenced the insignifcant axial 

strain rate dependent response. However, more study and additional tests are required 

prove this hypothesis. The density of the fluid was not a contributing factor in axial strain 

rate dependence. However, a parametric study with large diameters of the vessel 

segments would be required to deterimine the role played by the vessel size in perfusion-

induced strain rate dependence. In the model, the vessel segment was fashioned as 

transversly isotropic and homogenous. Both of these assumptions require further 

improvement. An orthotropic vessel segment with layer-specific principal fiber directions 

will improve the correspondance between the model and the vessel tissue. Relevance of 

the model would be further improved by modeling blood as the fluid. In the future, a 

study with a viscoelastic vessel segment will further our understanding of strain rate 

dependence of blood vessels.   

In conclusion, computational modeling of experiments furthered our 

understanding about vascular mechanics. However, limitations of our computational 

models, as well as interesting findings from the models themselves, created new 

questions. Therefore, further efforts are required to better understand vascular mechanics 

in isolated blood vessel experiments.   



APPENDIX 

FEBIO INPUT FILE, LS-DYNA KEYWORD, AND MATLAB CODES 
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FEBio input file 

<?xml version="1.0" encoding="ISO-8859-1"?> 
<febio_spec version="2.0"> 

<Globals> 
<Constants> 

<T>0</T>
<R>0</R>
<Fc>0</Fc>

</Constants> 
</Globals> 
<Material> 

<material id="1" name="blood vessel" type="trans iso Veronda-
Westmann"> 

<density>1</density> 
<c1>0.3</c1> 
<c2>0.9</c2> 
<k>4.99997</k>
<c3>0</c3>
<c4>0</c4>
<c5>0</c5>
<lam_max>0</lam_max>
<fiber type="local">  0,  0</fiber> 

</material> 
<material id="2" name="needle" type="rigid body"> 

<density>1</density> 
<center_of_mass>0,0,0</center_of_mass> 

</material> 
<material id="3" name="square bar" type="rigid body"> 

<density>1</density> 
<center_of_mass>0.247835,-0.878595,0</center_of_mass> 

</material> 
</Material> 
<Geometry> 

<Contact> 
<contact type="facet-to-facet sliding" name="sliding cotact 

between inner surface of blood vessel and outer surface of needle"> 
<laugon>1</laugon> 
<tolerance>0.2</tolerance> 
<penalty>400</penalty> 
<two_pass>1</two_pass> 
<auto_penalty>0</auto_penalty> 
<fric_coeff>0</fric_coeff> 
<fric_penalty>0</fric_penalty> 
<search_tol>0.01</search_tol> 
<minaug>0</minaug> 
<maxaug>10</maxaug> 
<gaptol>0</gaptol> 
<seg_up>0</seg_up> 
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<surface type="master"> 
</Contact> 

<Constraints> 
</Constraints> 
<LoadData> 

<loadcurve id="1" type="smooth"> 
<point>0,0</point> 
<point>1,1</point> 

</loadcurve> 
<loadcurve id="2" type="smooth"> 

<point>1,1</point> 
<point>2,1</point> 

</loadcurve> 
<loadcurve id="3" type="linear"> 

<point>0,0</point> 
<point>1,0</point> 
<point>2,1</point> 

</loadcurve> 
</LoadData> 
<Output> 

<plotfile type="febio"> 
<var type="contact gap"/> 
<var type="contact pressure"/> 
<var type="contact traction"/> 
<var type="displacement"/> 
<var type="reaction forces"/> 
<var type="stress"/> 

</plotfile> 
</Output> 
<Step name="Step01"> 

<Module type="solid"/> 
<Control> 

<time_steps>10</time_steps> 
<step_size>0.1</step_size> 
<max_refs>15</max_refs> 
<max_ups>10</max_ups> 
<dtol>0.001</dtol> 
<etol>0.01</etol> 
<rtol>0</rtol> 
<lstol>0.9</lstol> 
<time_stepper> 

<dtmin>0.01</dtmin> 
<dtmax>0.1</dtmax> 
<max_retries>5</max_retries> 
<opt_iter>10</opt_iter> 

</time_stepper> 
<analysis type="static"/> 

</Control> 
<Boundary> 
</Boundary> 
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<Contact> 
</contact> 

</Contact> 
<Constraints> 

<rigid_body mat="2"> 
<fixed bc="x"/> 
<fixed bc="y"/> 
<fixed bc="z"/> 
<fixed bc="Rx"/> 
<fixed bc="Ry"/> 

</rigid_body> 
<rigid_body mat="3"> 

<fixed bc="z"/> 
<fixed bc="Rx"/> 
<fixed bc="Ry"/> 
<fixed bc="Rz"/> 

</rigid_body> 
<rigid_body mat="2"> 

<prescribed bc="Rz" 
lc="1">1.57143</prescribed> 

</rigid_body> 
</Constraints> 

</Step> 
<Step name="Step02"> 

<Module type="solid"/> 
<Control> 

<time_steps>10</time_steps> 
<step_size>0.1</step_size> 
<max_refs>15</max_refs> 
<max_ups>10</max_ups> 
<dtol>0.001</dtol> 
<etol>0.01</etol> 
<rtol>0</rtol> 
<lstol>0.9</lstol> 
<time_stepper> 

<dtmin>1e-009</dtmin> 
<dtmax>0.1</dtmax> 
<max_retries>5</max_retries> 
<opt_iter>10</opt_iter> 

</time_stepper> 
<analysis type="static"/> 

</Control> 
<Boundary> 

<fix bc="uvw"> 
</Boundary> 

<Constraints> 
<rigid_body mat="2"> 

<fixed bc="x"/> 
<fixed bc="z"/> 
<fixed bc="Rx"/> 
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<fixed bc="Ry"/> 
</rigid_body> 
<rigid_body mat="2"> 

<prescribed bc="Rz" 
lc="2">1.57143</prescribed> 

</rigid_body> 
<rigid_body mat="2"> 

<prescribed bc="y" lc="3">0.8982</prescribed> 
</rigid_body> 

</Constraints> 
</Step> 

</febio_spec> 
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LS-DYNA Keyword 

$# LS-DYNA Keyword file created by LS-PrePost(R) V4.3 - 22Dec2016(09:00) 
$# Created on Jul-10-2017 (16:35:48) 
*KEYWORD
*TITLE
$#
title
LS-DYNA keyword deck by LS-PrePost
*CONTROL_ALE
$#     dct  nadv  meth  afac  bfac  cfac  dfac 
efac

-1  1  1 -1.0  0.0  0.0  0.0 
0.0 
$#   start  end  aafac  vfact  prit  ebc  pref 
nsidebc 

 0.01.00000E20  1.01.00000E-6  0  0  0.0 
0 
$#  ncpl  nbkt  imascl  checkr 

 1  50  0  0.0 
*CONTROL_ENERGY
$#  hgen  rwen  slnten  rylen 

 2  2  2  2 
*CONTROL_MPP_DECOMPOSITION_DISTRIBUTE_ALE_ELEMENTS
*CONTROL_STRUCTURED
*CONTROL_TERMINATION
$#  endtim  endcyc  dtmin  endeng    endmas 

 4.6125  0  0.0    0.01.000000E8 
*CONTROL_TIMESTEP
$#  dtinit  tssfac  isdo  tslimt  dt2ms  lctm  erode 
ms1st 

 0.0  0.9  0  0.0  0.0  0  0 
0 
$#  dt2msf  dt2mslc  imscl  unused  unused  rmscl 

 0.0  0  0  0.0 
*DATABASE_ELOUT
$#      dt  binary  lcur  ioopt  option1  option2  option3 
option4

 0.0025  0  0  1  0  0  0 
0 
*DATABASE_GLSTAT
$#  dt  binary  lcur  ioopt 

 0.0025  0  0  1 
*DATABASE_MATSUM
$#  dt  binary  lcur  ioopt 

 0.0025  0  0  1 
*DATABASE_BINARY_D3PLOT
$#  dt  lcdt  beam  npltc  psetid 

 0.0025  0  0  0  0 
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$#   ioopt 
   0 

*DATABASE_EXTENT_BINARY
$#   neiph  neips  maxint  strflg  sigflg  epsflg  rltflg 
engflg 

 0  0  3  1  1  1  1 
1 
$#  cmpflg  ieverp  beamip  dcomp  shge  stssz  n3thdt 
ialemat 

 0  0  0  1  1  1  2 
1 
$# nintsld  pkp_sen  sclp  hydro  msscl  therm  intout 
nodout 

 0  0  1.0  0  0  0 
$#  dtdt  resplt  neipb 

 0  0  0 
*DATABASE_FSI
$#  dt 

 0.0025 
$#dbsfi_id  sid  stype  swid  convid  ndsetid  cid 

 1  2  2  0  0  0  0 
*BOUNDARY_PRESCRIBED_MOTION_RIGID
$#  pid  dof  vad  lcid  sf  vid    death 
birth 

 5  3  2  3  1.0  01.00000E28 
0.0 
*BOUNDARY_SPC_SET
$#  nsid  cid  dofx  dofy  dofz  dofrx  dofry 
dofrz 

 1  0  1  0  0  1  1 
1 
*SET_NODE_LIST_TITLE
NODESET(SPC) 1
$#  sid  da1  da2  da3  da4  solver 

 1  0.0  0.0  0.0  0.0MECH 

*BOUNDARY_SPC_SET
$#  nsid  cid  dofx  dofy  dofz  dofrx  dofry 
dofrz 

 2  0  0  1  0  1  1 
1 
*SET_NODE_LIST_TITLE
NODESET(SPC) 2
$#  sid  da1  da2  da3  da4  solver 

 2  0.0  0.0  0.0  0.0MECH 
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MATLAB code to fit material model to experimental data 

%This file was originally written by E. David Bell as an example of how 
%Matlab can be used to fit experimental data using a user defined strain 
%energy function to fit, as well as a user defined objective function. 

clc; clear; close all 
global lamC lamZ Tcc Tzz LB UB 

% Load sampled data 
load QS_CircData_avg 
load QS_AxialData_avg 

% Group data into typical groupings (LamC, LamZ, Tcc, Tzz) 
S7 = cat(2,S7_LamC_avg,S7_LamZ_avg,S7_Tcc_avg,S7_Tzz_avg); 
S13 = cat(2,S13_LamC_avg,S13_LamZ_avg,S13_Tcc_avg,S13_Tzz_avg); 
% S20 = S20_sampled; 
Plow = cat(2,Plow_LamC_avg,Plow_LamZ_avg,Plow_Tcc_avg,Plow_Tzz_avg); 
Pmed = cat(2,Pmed_LamC_avg,Pmed_LamZ_avg,Pmed_Tcc_avg,Pmed_Tzz_avg); 
% Phi = Phi_sampled; 

% Pressure Tests (1=Plow; 2=Pmed; 3=Phigh;) 
% Axial Tests (4=S7; 5=S13; 6=S20;) 

 % Circumferential Stretch Data 
 lamC1 = Plow(:,1); 
 lamC2 = Pmed(:,1); 
 lamC3 = []; 
 lamC4 = S7(:,1); 
 lamC5 = S13(:,1); 
 lamC6 = []; 
 % Circumferential Stress Data 
 Tcc1 = Plow(:,3); 
 Tcc2 = Pmed(:,3); 
 Tcc3 = []; 
 Tcc4 = S7(:,3); 
 Tcc5 = S13(:,3); 
 Tcc6 = []; 
 % Axial Stretch Data 
 lamZ1 = Plow(:,2); 
 lamZ2 = Pmed(:,2); 
 lamZ3 = []; 
 lamZ4 = S7(:,2); 
 lamZ5 = S13(:,2); 
 lamZ6 = []; 
 % Axial Stress Data 
 Tzz1 = Plow(:,4); 
 Tzz2 = Pmed(:,4); 
 Tzz3 = []; 
 Tzz4 = S7(:,4); 
 Tzz5 = S13(:,4); 
 Tzz6 = []; 

 %% Fit pressure and axial test data 
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   lamC = cat(1,lamC1,lamC2,lamC3,lamC4,lamC5,lamC6); % circumferential 
stretch 

 lamZ = cat(1,lamZ1,lamZ2,lamZ3,lamZ4,lamZ5,lamZ6); % axial stretch 
 Tcc = cat(1,Tcc1,Tcc2,Tcc3,Tcc4,Tcc5,Tcc6); % circumferential stress 
 Tzz = cat(1,Tzz1,Tzz2,Tzz3,Tzz4,Tzz5,Tzz6); % axial stress 

 x0=[1,1,1,1]; 
 LB=[0.0149530,0.0064940,-inf,-inf]; 
 UB=[inf,inf,inf,inf]; 

 options = optimset('Largescale','off'); 
 options = optimset(options,'Algorithm','levenberg-marquardt'); 
 options = optimset(options,'Display','iter'); 
 options = optimset(options,'FunValCheck','on'); 
 options = optimset(options,'MaxFunEvals',500000); 
 options = optimset(options,'MaxIter',500000); 
 options = optimset(options,'TolFun',1e-12); 
 options = optimset(options,'TolX',1e-12); 

[x1,fval1]=fminsearchbnd(@Objective_Exponential_Function_Fung3,x0,LB,UB,optio
ns);; 

 % Create fit data 
 coeffs = x1; 
 % Stress fit data from pressure tests (1-3) 

 [YfitC1 YfitZ1] = CalcYfitsFung(coeffs,lamC1,lamZ1); 
 [YfitC2 YfitZ2] = CalcYfitsFung(coeffs,lamC2,lamZ2); 
 [YfitC3 YfitZ3] = CalcYfitsFung(coeffs,lamC3,lamZ3); 

 % Stress fit data from axial tests (4-6) 
 [YfitC4 YfitZ4] = CalcYfitsFung(coeffs,lamC4,lamZ4); 
 [YfitC5 YfitZ5] = CalcYfitsFung(coeffs,lamC5,lamZ5); 
 [YfitC6 YfitZ6] = CalcYfitsFung(coeffs,lamC6,lamZ6); 

   % Plot 1: Circum Stresses from P-Tests (1-3)and Axial Stresses from S-
Tests 

 % (4-6) 
   subplot(2,2,1) 

%         h1 = Figure(1); 
 plot(lamC1,Tcc1,'ro',lamC1,YfitC1,'r.-'); hold on 
 plot(lamC2,Tcc2,'bo',lamC2,YfitC2,'b.-'); hold on 
 plot(lamC3,Tcc3,'ko',lamC3,YfitC3,'k.-'); hold on 
 plot(lamZ4,Tzz4,'rx',lamZ4,YfitZ4,'r.-'); hold on 
 plot(lamZ5,Tzz5,'bx',lamZ5,YfitZ5,'b.-'); hold on 
 plot(lamZ6,Tzz6,'kx',lamZ6,YfitZ6,'k.-'); 
 legend('Plow Exp','Plow Fit',... 

 'Pmed Exp','Pmed Fit',... 
 'S7 Exp','S7 Fit',... 
 'S13 Exp','S13 Fit',... 
 'Location','NorthEast'); 

 ylabel('Cauchy Stress (MPa)') 
 xlabel('Stretch') 
 title('Model 3A: Circum Stresses from Circum Tests and Axial Stresses 

from Axial Tests') 
 % saveas(h1,'Fung Plot 1.png') 
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   % Plot 2: Axial Stress from P-Tests (1-3) and Circum Stresses from S-
Tests 

 % (4-6) 
   subplot(2,2,2) 

%         h2 = Figure(2); 
 plot(lamZ1,Tzz1,'ro',lamZ1,YfitZ1,'r.-'); hold on 
 plot(lamZ2,Tzz2,'bo',lamZ2,YfitZ2,'b.-'); hold on 
 plot(lamZ3,Tzz3,'ko',lamZ3,YfitZ3,'k.-'); hold on 
 plot(lamC4,Tcc4,'rx',lamC4,YfitC4,'r.-'); hold on 
 plot(lamC5,Tcc5,'bx',lamC5,YfitC5,'b.-'); hold on 
 plot(lamC6,Tcc6,'kx',lamC6,YfitC6,'k.-'); 
 legend('Plow Exp','Plow Fit',... 

 'Pmed Exp','Pmed Fit',... 
 'S7 Exp','S7 Fit',... 
 'S13 Exp','S13 Fit',... 
 'Location','NorthEast'); 

 ylabel('Cauchy Stress (MPa)') 
 xlabel('Stretch') 
 title('Model 3A: Axial Stress from Circum Tests and Circum Stresses 

from Axial Tests') 
 % saveas(h2,'Fung Plot 2.png') 

 x1 
 fval1 

%  %% Fit only pressure test data 
% 
%  lamC = cat(1,lamC1); % circumferential stretch 
%  lamZ = cat(1,lamZ1); % axial stretch 
%  Tcc = cat(1,Tcc1); % circumferential stress 
%  Tzz = cat(1,Tzz1); % axial stress 
% 
%  x0=[1,1,1,1]; 
% 
%  options = optimset('Largescale','off'); 
%  options = optimset(options,'Algorithm','levenberg-marquardt'); 
%  options = optimset(options,'Display','iter'); 
%  options = optimset(options,'FunValCheck','on'); 
%  options = optimset(options,'MaxFunEvals',500000); 
%  options = optimset(options,'MaxIter',500000); 
%  options = optimset(options,'TolFun',1e-12); 
%  options = optimset(options,'TolX',1e-12); 
% 
% 
[x2,fval2]=fminsearch(@Objective_Exponential_Function_Fung3,x0,options); 
%  
%  % Create fit data 
%  coeffs = x2; 
%  % Stress fit data from pressure tests (1-3) 
%  [YfitC1 YfitZ1] = CalcYfitsFung(coeffs,lamC1,lamZ1); 
% 
%  % Plot 3: Circumferential Stress from Pressure Tests (1-3) 
%  h3 = Figure(3); 
%  subplot(1,2,2) 
%  plot(lamC1,Tcc1,'ko',lamC1,YfitC1,'r-'); hold on 
%  legend('Piv Exp','Piv Fit','Location','NorthWest'); 
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%  ylabel('Cauchy Stress (MPa)') 
%  xlabel('Stretch') 
%  title('Fung Model - Circum Stress from P-Tests') 
%  %  saveas(h3,'Fung Plot 3.png') 
% 
%  % Plot 4: Axial Stress from Pressure Tests (1-3) 
%  h4 = Figure(3); 
%  subplot(1,2,1) 
%  plot(lamZ1,Tzz1,'ko',lamZ1,YfitZ1,'r-'); hold on 
%  legend('Piv Exp','Piv Fit','Location','NorthWest'); 
%  ylabel('Cauchy Stress (MPa)') 
%  xlabel('Stretch') 
%  title('Fung Model - Axial Stress from P-Tests') 
%  %  saveas(h4,'Fung Plot 4.png') 
% 
%  x2 
%  fval2 

 %% Fit only stretch test data 

 lamC = cat(1,lamC4,lamC5); % circumferential stretch 
 lamZ = cat(1,lamZ4,lamZ5); % axial stretch 
 Tcc = cat(1,Tcc4,Tcc5); % circumferential stress 
 Tzz = cat(1,Tzz4,Tzz5); % axial stress 

 x0=[1,1,1,1]; 

 options = optimset('Largescale','off'); 
 options = optimset(options,'Algorithm','levenberg-marquardt'); 
 options = optimset(options,'Display','iter'); 
 options = optimset(options,'FunValCheck','on'); 
 options = optimset(options,'MaxFunEvals',500000); 
 options = optimset(options,'MaxIter',500000); 
 options = optimset(options,'TolFun',1e-12); 
 options = optimset(options,'TolX',1e-12); 

 [x3,fval3]=fminsearch(@Objective_Exponential_Function_Fung3,x0,options); 

 % Create fit data 
 coeffs = x3; 
 % Stress fit data from stretch tests (4-6) 

 [YfitC4 YfitZ4] = CalcYfitsFung(coeffs,lamC4,lamZ4); 
 [YfitC5 YfitZ5] = CalcYfitsFung(coeffs,lamC5,lamZ5); 

 % Plot 5: Axial Stress from Stretch Tests (4-6) 
%    h5 = Figure(5); 

 subplot(2,2,3) 
 plot(lamZ4,Tzz4,'rx',lamZ4,YfitZ4,'r.-'); hold on 
 plot(lamZ5,Tzz5,'bx',lamZ5,YfitZ5,'b.-'); 
 legend('S7 Exp','S7 Fit','S13 Exp','S13 Fit','Location','NorthWest'); 
 ylabel('Axial Stress (MPa)') 
 xlabel('Axial Stretch') 
 title('Model 3B: Axial Stress from Axial Tests') 

 %     saveas(h5,'Fung Plot 5.png') 
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 % Plot 6: Circumferential Stress from Axial Tests (4-6) 
 subplot(2,2,4) 
 plot(lamC4,Tcc4,'rx',lamC4,YfitC4,'r.-'); hold on 
 plot(lamC5,Tcc5,'bx',lamC5,YfitC5,'b.-'); 
 legend('S7 Exp','S7 Fit','S13 Exp','S13 Fit','Location','NorthWest'); 
 ylabel('Circumferential Stress (MPa)') 
 xlabel('Circumferential Stretch') 
 title('Model 3B: Circumferential Stress from Axial Tests') 

 %     saveas(h6,'Fung Plot 6.png') 

 x3 
 fval3 

function [YfitC, YfitZ] = CalcYfitsFung(coeffs,lamC,lamZ) 

c = coeffs(1); c1 = coeffs(2); c2 = coeffs(3); c3 = coeffs(4); 

YfitC = ((2.*((lamC.^2) - 
1./((lamC.^2).*(lamZ.^2)))).*c)+((2.*(((lamC.^2).*(lamZ.^2)) - 
1./(lamC.^2))).*c1); 
YfitZ = ((2*(lamZ.^2 - 
1./((lamC.^2).*(lamZ.^2))))*c)+((2*(((lamC.^2).*(lamZ.^2)) - 
1./(lamZ.^2)))*c1)+((exp(c2*(lamZ-1))-1)*c3); 

function 
[x,fval,exitflag,output]=fminsearchbnd(fun,x0,LB,UB,options,varargin) 
% FMINSEARCHBNDNEW: FMINSEARCH, but with bound constraints by transformation 
% 
% Changes from fminsearchbnd: 
% 1) in options structure, user may pass an 'output function' and 'plot 
function' to fminsearch. 
% Original fminsearchbnd handled the output function via a nested wrapper 
function.  I have extended 
% this to the plot function too.  
% 2) I have moved the 'intrafun' and 'xtransform' functions and wrappers to 
be nested functions  
% (INSIDE the fminsearchbnd function), so they do not need to pass the params 
structure around  
% (into fminsearch) - but have access to it directly.  This maintains the 
integrity of the varargin,  
% which the user may be passing thru fminsearch to their optmization funciton 
(fminsearchbnd had  
% passed the params structure to fminsearch, thus ruining any varargin that 
the user passed in). 
% This also obviates the params.(whatever) structure the author had, so I've 
eliminated it so things 
% are simpler. 
% 3) I have created a test example so the user can see not only how 
fminseachbnd works, but also how 
% the OutputFn and PrintFns functions work, which were heretofore poorly 
documented by MathWorks. 
% Many thanks to the original author, John D'Errico, for excellent work - 
very useful! 
% 
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%  Modifications by: Ken Purchase 
%  Email: kpurchase at yahoo 
%  Date: 2007-Nov-29 
% 
% 
% usage: x=FMINSEARCHBND(fun,x0) 
% usage: x=FMINSEARCHBND(fun,x0,LB) 
% usage: x=FMINSEARCHBND(fun,x0,LB,UB) 
% usage: x=FMINSEARCHBND(fun,x0,LB,UB,options) 
% usage: x=FMINSEARCHBND(fun,x0,LB,UB,options,p1,p2,...) 
% usage: [x,fval,exitflag,output]=FMINSEARCHBND(fun,x0,...) 
%  
% arguments: 
%  fun, x0, options - see the help for FMINSEARCH 
% 
%  LB - lower bound vector or array, must be the same size as x0 
% 
%  If no lower bounds exist for one of the variables, then 
%  supply -inf for that variable. 
% 
%  If no lower bounds at all, then LB may be left empty. 
% 
%  Variables may be fixed in value by setting the corresponding 
%  lower and upper bounds to exactly the same value. 
% 
%  UB - upper bound vector or array, must be the same size as x0 
% 
%  If no upper bounds exist for one of the variables, then 
%  supply +inf for that variable. 
% 
%  If no upper bounds at all, then UB may be left empty. 
% 
%  Variables may be fixed in value by setting the corresponding 
%  lower and upper bounds to exactly the same value. 
% 
% Notes: 
% 
%  If options is supplied, then TolX will apply to the transformed 
%  variables. All other FMINSEARCH parameters should be unaffected. 
% 
%  Variables which are constrained by both a lower and an upper 
%  bound will use a sin transformation. Those constrained by 
%  only a lower or an upper bound will use a quadratic 
%  transformation, and unconstrained variables will be left alone. 
% 
%  Variables may be fixed by setting their respective bounds equal. 
%  In this case, the problem will be reduced in size for FMINSEARCH. 
% 
%  The bounds are inclusive inequalities, which admit the 
%  boundary values themselves, but will not permit ANY function 
%  evaluations outside the bounds. These constraints are strictly 
%  followed. 
% 
%  If your problem has an EXCLUSIVE (strict) constraint which will 
%  not admit evaluation at the bound itself, then you must provide 
%  a slightly offset bound. An example of this is a function which 
%  contains the log of one of its parameters. If you constrain the 
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%  variable to have a lower bound of zero, then FMINSEARCHBND may 
%  try to evaluate the function exactly at zero. 
% 
% 
% Example: 
% rosen = @(x) (1-x(1)).^2 + 105*(x(2)-x(1).^2).^2; 
% 
% fminsearch(rosen,[3 3])     % unconstrained 
% ans = 
%    1.0000    1.0000 
% 
% fminsearchbnd(rosen,[3 3],[2 2],[])     % constrained 
% ans = 
%    2.0000    4.0000 
% 
% See test_main.m for other examples of use. 
% 
% 
% See also: fminsearch, fminspleas 
% 
% 
% Author: John D'Errico 
% E-mail: woodchips@rochester.rr.com 
% Release: 4 
% Release date: 7/23/06 

% size checks 
xsize = size(x0); 
x0 = x0(:); 
xLength=length(x0); 

if (nargin<3) || isempty(LB) 
  LB = repmat(-inf,xLength,1); 
else 
  LB = LB(:); 
end 
if (nargin<4) || isempty(UB) 
  UB = repmat(inf,xLength,1); 
else 
  UB = UB(:); 
end 

if (xLength~=length(LB)) || (xLength~=length(UB)) 
  error 'x0 is incompatible in size with either LB or UB.' 
end 

% set default options if necessary 
if (nargin<5) || isempty(options) 
  options = optimset('fminsearch'); 
end 

% 0 --> unconstrained variable 
% 1 --> lower bound only 
% 2 --> upper bound only 
% 3 --> dual finite bounds 
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% 4 --> fixed variable 
BoundClass = zeros(xLength,1); 
for i=1:xLength 
 k = isfinite(LB(i)) + 2*isfinite(UB(i)); 
 BoundClass(i) = k; 
 if (k==3) && (LB(i)==UB(i)) 

 BoundClass(i) = 4; 
  end 
end 

% transform starting values into their unconstrained 
% surrogates. Check for infeasible starting guesses. 
x0u = x0; 
k=1; 
for i = 1:xLength 
 switch BoundClass(i) 

 case 1 
 % lower bound only 
 if x0(i)<=LB(i) 

 % infeasible starting value. Use bound. 
   x0u(k) = 0; 
 else 

 x0u(k) = sqrt(x0(i) - LB(i)); 
 end 

 % increment k 
   k=k+1; 
 case 2 

 % upper bound only 
 if x0(i)>=UB(i) 

 % infeasible starting value. use bound. 
   x0u(k) = 0; 
 else 

 x0u(k) = sqrt(UB(i) - x0(i)); 
 end 

 % increment k 
   k=k+1; 
 case 3 

 % lower and upper bounds 
 if x0(i)<=LB(i) 

 % infeasible starting value 
   x0u(k) = -pi/2; 
 elseif x0(i)>=UB(i) 

 % infeasible starting value 
 x0u(k) = pi/2; 

 else 
 x0u(k) = 2*(x0(i) - LB(i))/(UB(i)-LB(i)) - 1; 
 % shift by 2*pi to avoid problems at zero in fminsearch 
 % otherwise, the initial simplex is vanishingly small 
 x0u(k) = 2*pi+asin(max(-1,min(1,x0u(k)))); 

 end 

 % increment k 
   k=k+1; 
 case 0 
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 % unconstrained variable. x0u(i) is set. 
 x0u(k) = x0(i); 

 % increment k 
   k=k+1; 
 case 4 

 % fixed variable. drop it before fminsearch sees it. 
 % k is not incremented for this variable. 

 end 

end 
% if any of the unknowns were fixed, then we need to shorten 
% x0u now. 
if k<=xLength 
  x0u(k:xLength) = []; 
end 

% were all the variables fixed? 
if isempty(x0u) 
 % All variables were fixed. quit immediately, setting the 
 % appropriate parameters, then return. 

 % undo the variable transformations into the original space 
 x = xtransform(x0u); 

 % final reshape 
 x = reshape(x,xsize); 

 % stuff fval with the final value 
 fval = feval(fun,x,varargin); 

 % fminsearchbnd was not called 
 exitflag = 0; 

 output.iterations = 0; 
 output.funcount = 1; 
 output.algorithm = 'no call (all variables fixed)'; 
 output.message = 'All variables were held fixed by the applied bounds'; 

 % return with no call at all to fminsearch 
  return 
end 

% Add the wrapper function to the user function right here inline: 
   intrafun = @(x, varargin) fun(xtransform(x), varargin{:}); 

% Added code:  Add wrappers to output function(s) and plot function(s) - you 
can specify multiple 
% output and/or print functions if you use a cell array of function handles. 

 if ~isempty(options) 
 % Add a wrapper to the output function(s)  
 % fetch the output function and put it(them) into a cell array: 
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   OutputFcn = 
createCellArrayOfFunctions(optimget(options,'OutputFcn',struct('OutputFcn',[]
),'fast'),'OutputFcn'); 

 for ii = 1:length(OutputFcn) 
 %stop = firstOutputFunction(OutStructure, optimValues, state, 

varargin) 
   OutputFcn{ii} = @(x, varargin) OutputFcn{ii}(xtransform(x), 

varargin{:}); 
 end 
 % store the "wrapped" output function back into the options. 
 options = optimset(options, 'OutputFcn', OutputFcn); 

 % Add a wrapper to the plot function(s)  
 % fetch the plot function and put it(them) into a cell array: 
 PlotFcn = 

createCellArrayOfFunctions(optimget(options,'PlotFcns',struct('PlotFcns',[]),
'fast'),'PlotFcns'); 

 for ii = 1:length(PlotFcn) 
 %stop = firstOutputFunction(OutStructure, optimValues, state, 

varargin) 
   PlotFcn{ii} = @(x, varargin) PlotFcn{ii}(xtransform(x), 

varargin{:}); 
 end 
 % store the "wrapped" output function back into the options. 
 options = optimset(options, 'PlotFcns', PlotFcn); 
 % Add a wrapper to the print function(s)  

 end 

% now we can call fminsearch, but with our own 
% intra-objective function. 
[xu,fval,exitflag,output] = fminsearch(intrafun,x0u,options,varargin); 
output.algorithm = [output.algorithm ' bounded using fminsearchbnd']; 

% undo the variable transformations into the original space 
x = xtransform(xu); 

% final reshape 
x = reshape(x,xsize); 

 % ====================================== 
 % ========= begin NESTED subfunctions ========= 
 % ====================================== 

 function xtrans = xtransform(x) 
 % converts unconstrained variables into their original domains 

 xtrans = zeros(xsize); %zeros(xLength, 1);  % I changed this to make 
it same dimension as the x in fminsearch 

   % was zeros(1, params.xLength) 
 % k allows some variables to be fixed, thus dropped from the 
 % optimization. 
 k=1; 
 for i = 1:xLength 
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 switch BoundClass(i) 
 case 1 

 % lower bound only 
 xtrans(i) = LB(i) + x(k).^2; 

   k=k+1; 
 case 2 

 % upper bound only 
 xtrans(i) = UB(i) - x(k).^2; 

   k=k+1; 
 case 3 

 % lower and upper bounds 
 xtrans(i) = (sin(x(k))+1)/2; 
 xtrans(i) = xtrans(i)*(UB(i) - LB(i)) + LB(i); 
 % just in case of any floating point problems 
 xtrans(i) = max(LB(i),min(UB(i),xtrans(i))); 

   k=k+1; 
 case 4 

 % fixed variable, bounds are equal, set it at either bound 
   xtrans(i) = LB(i); 
 case 0 

 % unconstrained variable. 
 xtrans(i) = x(k); 

 k=k+1; 
 end 

 end 

 end % sub function xtransform end 

end % mainline end 

function [error] = Objective_Exponential_Function_Fung3(x,varargin) 
% Bell 2012 Fung model but normalize by max stress 

global lamC lamZ Tcc Tzz 

coeffs = x; 

[YfitC, YfitZ] = CalcYfitsFung(coeffs,lamC,lamZ); 

error = sum(((YfitC - Tcc)).^2/max(Tcc) + ((YfitZ - Tzz)).^2/max(Tzz)); 
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